Optimizing electrokinetic treatments for enhanced mortar durability: ionic migration and microstructural analysis

IF 0.5 4区 材料科学 Q4 MATERIALS SCIENCE, MULTIDISCIPLINARY Materia-rio De Janeiro Pub Date : 2023-01-01 DOI:10.1590/1517-7076-rmat-2023-0210
Priyanka Rajendran, Revathi Vaiyapuri, Rajaiah Selvaraj
{"title":"Optimizing electrokinetic treatments for enhanced mortar durability: ionic migration and microstructural analysis","authors":"Priyanka Rajendran, Revathi Vaiyapuri, Rajaiah Selvaraj","doi":"10.1590/1517-7076-rmat-2023-0210","DOIUrl":null,"url":null,"abstract":"This study investigated the effects of electrokinetic treatments on mortar specimens using a range of experimental techniques. Ionic migration tests revealed that increasing voltage and duration led to higher charge transfer, with Ca(OH)2 electrolyte showing the highest cationic migration. X-ray fluorescence analysis indicated that Nano-Silica treatment resulted in the highest oxide content, transforming absorbed elements effectively. The chloride penetration test demonstrated that Ca(OH)2 treatment exhibited the lowest charge passed, suggesting minimal chloride penetration, while NaOH and KOH treatments showed higher charge passed. Field Emission Scanning Electron Microscopy analysis provided visual evidence of structural changes and material depositions. Calcium Hydroxide treatment reduced porosity, Sodium Hydroxide, and Potassium Hydroxide treatments displayed distinct particle distributions, and Nano Silica treatment led to the formation of hair-like crystal structures. These findings help to understand the microstructure and composition of cement mortar specimens after various treatments. The nano-silica electrolyte appeared as a viable choice for electro-kinetic therapy, whereas Ca(OH)2 treatment stated the potential to reduce chloride penetration in mortar specimens. The results offer insights into optimizing electrokinetic treatments for improved mortar performance.","PeriodicalId":18260,"journal":{"name":"Materia-rio De Janeiro","volume":"9 1","pages":"0"},"PeriodicalIF":0.5000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materia-rio De Janeiro","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1590/1517-7076-rmat-2023-0210","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

This study investigated the effects of electrokinetic treatments on mortar specimens using a range of experimental techniques. Ionic migration tests revealed that increasing voltage and duration led to higher charge transfer, with Ca(OH)2 electrolyte showing the highest cationic migration. X-ray fluorescence analysis indicated that Nano-Silica treatment resulted in the highest oxide content, transforming absorbed elements effectively. The chloride penetration test demonstrated that Ca(OH)2 treatment exhibited the lowest charge passed, suggesting minimal chloride penetration, while NaOH and KOH treatments showed higher charge passed. Field Emission Scanning Electron Microscopy analysis provided visual evidence of structural changes and material depositions. Calcium Hydroxide treatment reduced porosity, Sodium Hydroxide, and Potassium Hydroxide treatments displayed distinct particle distributions, and Nano Silica treatment led to the formation of hair-like crystal structures. These findings help to understand the microstructure and composition of cement mortar specimens after various treatments. The nano-silica electrolyte appeared as a viable choice for electro-kinetic therapy, whereas Ca(OH)2 treatment stated the potential to reduce chloride penetration in mortar specimens. The results offer insights into optimizing electrokinetic treatments for improved mortar performance.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
优化电动处理增强砂浆耐久性:离子迁移和微观结构分析
本研究利用一系列实验技术研究了电动处理对砂浆试样的影响。离子迁移测试表明,电压和持续时间的增加导致电荷转移的增加,其中Ca(OH)2电解质显示出最高的阳离子迁移。x射线荧光分析表明,纳米二氧化硅处理导致氧化物含量最高,有效转化吸收元素。氯离子渗透试验表明,Ca(OH)2处理的电荷通过量最小,表明氯离子渗透量最小,而NaOH和KOH处理的电荷通过量较大。场发射扫描电镜分析提供了结构变化和材料沉积的视觉证据。氢氧化钙处理降低了孔隙率,氢氧化钠和氢氧化钾处理显示出明显的颗粒分布,纳米二氧化硅处理导致了毛发状晶体结构的形成。这些发现有助于了解不同处理后水泥砂浆试件的微观结构和组成。纳米二氧化硅电解质似乎是电动治疗的可行选择,而Ca(OH)2处理表明了减少砂浆样品中氯化物渗透的潜力。结果为优化电动处理以改善砂浆性能提供了见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Materia-rio De Janeiro
Materia-rio De Janeiro MATERIALS SCIENCE, MULTIDISCIPLINARY-
CiteScore
1.00
自引率
25.00%
发文量
51
审稿时长
6 weeks
期刊介绍: All the articles are submitted to a careful peer-reviewing evaluation process by the journal''s Editorial Board. The Editorial Board, reviewers and authors make use of a web based proprietary automated tool to deal with the reviewing procedures.the Revista Matéria''s article reviewing restricted access system - SEER. Authors are not informed about the identity of the reviewers.
期刊最新文献
Structural performance of hybrid FRP laminates on concrete beams made with manufactured sand Incorporação de fibras de papel kraft provenientes de embalagens de cimento pós-uso para produção de pisogramas de concreto Synthesized activated carbon derived from discarded styrofoam and effectively removal of nickel (II) from aqueous solutions The effect of chloride, sulfate, and ammonium ions on the semiconducting behavior and corrosion resistance of AISI 304 stainless steel passive film Mechanical properties of asphalt mixtures containing reclaimed asphalt incorporating Acrylonitrile Butadiene Styrene (ABS)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1