{"title":"Exploring the Potential of Fucoxanthin Treatment to Alleviate Microplastic Pollution Effects on Maize Growth","authors":"Farzad Rassaei","doi":"10.1080/15320383.2023.2258413","DOIUrl":null,"url":null,"abstract":"ABSTRACTFucoxanthin (FX) is a natural pigment that is found in brown seaweeds, diatoms, and other marine organisms. FX helps to improve the soil’s physical and chemical properties. FX has been shown to have a positive impact on plant growth. The widespread usage and production of microplastics (MPs) products has resulted in a surge of plastic waste in the natural environment, posing a growing threat to plant growth. This study investigated the effects of Polystyrene MPs (PS) and FX on soil pH, electrical conductivity (EC), organic matter ;(OM), and available nutrients and maize (Zea mays L.) growth in a calcareous soil. Results showed PS led to a decline in soil pH, which negatively impacted maize growth. Higher levels of PS led to lower root and shoot dry weight, chlorophyll content, leaf area, and plant height. Increasing FX levels in the soil led to an increase in available nutrients, while decreasing EC and had a positive effect on maize growth factors, particularly under non-stress conditions. The positive effects of FX may be due to its antioxidant properties, ability to enhance photosynthesis, aid in nutrient absorption, and activate growth-related genes. FX mitigated the negative effects of PS on plant growth. The study highlights the potential of FX as a soil amendment to promote plant growth and mitigate the effects of environmental stressors on agriculture.KEYWORDS: Microplasticspolystyrenefucoxanthinsoil propertiesmaize growth Highlights PS contamination has negative effects on soil pH, while FX amendments increase soil pH and mitigate the decline caused by PS.Increasing FX doses lead to greater pH increases and have a positive effect on soil OM and nutrient availability.FX amendments have a significant positive effect on maize growth factors, particularly under non-stress conditions.The combined effect of FX and PS on plant growth was significant, with FX amendments mitigating the negative effects of PS contamination.The study suggests that adding FX to the soil can counteract the acidification caused by PS MPs, and the effectiveness of FX on soil pH is dose-dependent.The findings have important implications for the management of contaminated soils, particularly in areas with high levels of MPs pollution, and highlight the potential of FX as a soil amendment to promote plant growth and mitigate the effects of environmental stressors on agriculture.Authors’ contributionsFarzad Rassaei: design of the work, the acquisition, analysis, interpretation of data, writing the manuscript.Disclosure statementNo potential conflict of interest was reported by the author(s).Availability of data and materialsThe datasets during and/or analyzed during the current study available from the corresponding author upon reasonable request.Additional informationFundingThere is no funding regarding this manuscript.","PeriodicalId":21865,"journal":{"name":"Soil and Sediment Contamination: An International Journal","volume":"114 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Soil and Sediment Contamination: An International Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/15320383.2023.2258413","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
ABSTRACTFucoxanthin (FX) is a natural pigment that is found in brown seaweeds, diatoms, and other marine organisms. FX helps to improve the soil’s physical and chemical properties. FX has been shown to have a positive impact on plant growth. The widespread usage and production of microplastics (MPs) products has resulted in a surge of plastic waste in the natural environment, posing a growing threat to plant growth. This study investigated the effects of Polystyrene MPs (PS) and FX on soil pH, electrical conductivity (EC), organic matter ;(OM), and available nutrients and maize (Zea mays L.) growth in a calcareous soil. Results showed PS led to a decline in soil pH, which negatively impacted maize growth. Higher levels of PS led to lower root and shoot dry weight, chlorophyll content, leaf area, and plant height. Increasing FX levels in the soil led to an increase in available nutrients, while decreasing EC and had a positive effect on maize growth factors, particularly under non-stress conditions. The positive effects of FX may be due to its antioxidant properties, ability to enhance photosynthesis, aid in nutrient absorption, and activate growth-related genes. FX mitigated the negative effects of PS on plant growth. The study highlights the potential of FX as a soil amendment to promote plant growth and mitigate the effects of environmental stressors on agriculture.KEYWORDS: Microplasticspolystyrenefucoxanthinsoil propertiesmaize growth Highlights PS contamination has negative effects on soil pH, while FX amendments increase soil pH and mitigate the decline caused by PS.Increasing FX doses lead to greater pH increases and have a positive effect on soil OM and nutrient availability.FX amendments have a significant positive effect on maize growth factors, particularly under non-stress conditions.The combined effect of FX and PS on plant growth was significant, with FX amendments mitigating the negative effects of PS contamination.The study suggests that adding FX to the soil can counteract the acidification caused by PS MPs, and the effectiveness of FX on soil pH is dose-dependent.The findings have important implications for the management of contaminated soils, particularly in areas with high levels of MPs pollution, and highlight the potential of FX as a soil amendment to promote plant growth and mitigate the effects of environmental stressors on agriculture.Authors’ contributionsFarzad Rassaei: design of the work, the acquisition, analysis, interpretation of data, writing the manuscript.Disclosure statementNo potential conflict of interest was reported by the author(s).Availability of data and materialsThe datasets during and/or analyzed during the current study available from the corresponding author upon reasonable request.Additional informationFundingThere is no funding regarding this manuscript.