{"title":"Estimating US farmers' speed of climate change adaptation: the case of subsurface tile drainage","authors":"Haden Comstock, Nathan DeLay","doi":"10.1108/afr-02-2023-0027","DOIUrl":null,"url":null,"abstract":"Purpose Climate change is expected to cause larger and more frequent precipitation events in key agricultural regions of the United States, damaging crops and soils. Subsurface tile drainage is an important technology for mitigating the risks of a wetter climate in crop production. In this study, the authors examine how quickly farmers adapt to increased precipitation by investing in drainage technology. Design/methodology/approach Using farm-level data from the 2018 Agricultural Resource Management Survey (ARMS) of soybean producers, the authors construct a drainage adoption timeline based on when the operator began farming their land and when tile drainage was installed, if at all. The authors examine both the initial investment decision and the speed with which drainage is installed by adopters. A Heckman-style Poisson regression is used to model the count nature of adoption speed (measured in years taken to install tile drainage) and to correct for potential sample-selection bias. Findings The authors find that local precipitation is not a significant determinant of the drainage investment decision but may be highly influential in the timing of adoption among drainage users. Farms exposed to crop-damaging levels of precipitation install tile drainage faster than those with low to moderate levels of rainfall. Estimates of farm adaptation speeds are heterogeneous across farm and operator characteristics, most notably land tenure status. Originality/value Understanding how US farmers adapt to extreme weather through technology adoption is key to predicting the long-term impacts of climate change on America's food system. This study extends the existing climate adaptation literature by focusing on the speed of adoption of an important and increasingly common climate-mitigating technology – subsurface tile drainage.","PeriodicalId":46748,"journal":{"name":"Agricultural Finance Review","volume":"42 1","pages":"0"},"PeriodicalIF":1.5000,"publicationDate":"2023-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Agricultural Finance Review","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1108/afr-02-2023-0027","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"AGRICULTURAL ECONOMICS & POLICY","Score":null,"Total":0}
引用次数: 0
Abstract
Purpose Climate change is expected to cause larger and more frequent precipitation events in key agricultural regions of the United States, damaging crops and soils. Subsurface tile drainage is an important technology for mitigating the risks of a wetter climate in crop production. In this study, the authors examine how quickly farmers adapt to increased precipitation by investing in drainage technology. Design/methodology/approach Using farm-level data from the 2018 Agricultural Resource Management Survey (ARMS) of soybean producers, the authors construct a drainage adoption timeline based on when the operator began farming their land and when tile drainage was installed, if at all. The authors examine both the initial investment decision and the speed with which drainage is installed by adopters. A Heckman-style Poisson regression is used to model the count nature of adoption speed (measured in years taken to install tile drainage) and to correct for potential sample-selection bias. Findings The authors find that local precipitation is not a significant determinant of the drainage investment decision but may be highly influential in the timing of adoption among drainage users. Farms exposed to crop-damaging levels of precipitation install tile drainage faster than those with low to moderate levels of rainfall. Estimates of farm adaptation speeds are heterogeneous across farm and operator characteristics, most notably land tenure status. Originality/value Understanding how US farmers adapt to extreme weather through technology adoption is key to predicting the long-term impacts of climate change on America's food system. This study extends the existing climate adaptation literature by focusing on the speed of adoption of an important and increasingly common climate-mitigating technology – subsurface tile drainage.
期刊介绍:
Agricultural Finance Review provides a rigorous forum for the publication of theory and empirical work related solely to issues in agricultural and agribusiness finance. Contributions come from academic and industry experts across the world and address a wide range of topics including: Agricultural finance, Agricultural policy related to agricultural finance and risk issues, Agricultural lending and credit issues, Farm credit, Businesses and financial risks affecting agriculture and agribusiness, Agricultural policies affecting farm or agribusiness risks and profitability, Risk management strategies including the use of futures and options, Rural credit in developing economies, Microfinance and microcredit applied to agriculture and rural development, Financial efficiency, Agriculture insurance and reinsurance. Agricultural Finance Review is committed to research addressing (1) factors affecting or influencing the financing of agriculture and agribusiness in both developed and developing nations; (2) the broadest aspect of risk assessment and risk management strategies affecting agriculture; and (3) government policies affecting farm profitability, liquidity, and access to credit.