Utilization of Eco-Friendly Rice Husk Ash Waste as Reinforcement in LDPE Thermoplastics

Q4 Environmental Science Ecological Engineering Environmental Technology Pub Date : 2023-11-01 DOI:10.12912/27197050/171867
Eva Marlina Ginting, Motlan Motlan, Ridwan Abdulah Sani, Nurdin Bukit, Bunga Fisikanta Bukit
{"title":"Utilization of Eco-Friendly Rice Husk Ash Waste as Reinforcement in LDPE Thermoplastics","authors":"Eva Marlina Ginting, Motlan Motlan, Ridwan Abdulah Sani, Nurdin Bukit, Bunga Fisikanta Bukit","doi":"10.12912/27197050/171867","DOIUrl":null,"url":null,"abstract":"The topic of environmental contamination is currently regarded as one of the most urgent and significant challenges in contemporary society. Several strategies must be implemented to mitigate the environmental impact caused by waste materials, such as to rice husks ash, plastic, and other materials. Low-density polyethylene is widely recognized in academic circles for its distinctive property of having a low melting point and demonstrating inferior thermal stability. However, the utilization of RHA has promise for augmenting the thermal LDPE. The inclusion of silica inside rice husk ash functions as a flame retardant, hence augmenting the material’s capacity to resist combustion and thermal degradation. The objective of this study is to utilization of eco-friendly RHA waste as re-inforcement in LDPE thermoplastics. RHA is produced by the coprecipitation process. Rheomixer is used to make thermoplastic composites by incorporate RHA into LDPE 0, 2, 4, 6, 8, and 10 wt.%. The micrograph of the failure surface of the composite material consisting of LDPE filled with reactive hot-melt adhesive RHA particles reveals significant variations in particle sizes. In adittion XRD graph showed a decrease in intensity when 6% wt and 8% wt RHA were added. The results of thermal analysis with DSC showed an increase in the melting point of the sample with RHA reinforcement from 108.96–109.21 o C and 482.47–500.09 o C. The incorporation of RHA as a reinforcement in LDPE holds promise for its utilization as a material possessing favorable thermal characteristics suitable for industrial applications such as pipes and protective coatings, which required enhanced thermal resistance. The utilization of rice husk ash (RHA) waste imposes both environmental and economic impacts. RHA has the potential to reduce environmental pollution caused by waste and decrease the costs involved in material production.","PeriodicalId":52648,"journal":{"name":"Ecological Engineering Environmental Technology","volume":"5 4","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ecological Engineering Environmental Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.12912/27197050/171867","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Environmental Science","Score":null,"Total":0}
引用次数: 0

Abstract

The topic of environmental contamination is currently regarded as one of the most urgent and significant challenges in contemporary society. Several strategies must be implemented to mitigate the environmental impact caused by waste materials, such as to rice husks ash, plastic, and other materials. Low-density polyethylene is widely recognized in academic circles for its distinctive property of having a low melting point and demonstrating inferior thermal stability. However, the utilization of RHA has promise for augmenting the thermal LDPE. The inclusion of silica inside rice husk ash functions as a flame retardant, hence augmenting the material’s capacity to resist combustion and thermal degradation. The objective of this study is to utilization of eco-friendly RHA waste as re-inforcement in LDPE thermoplastics. RHA is produced by the coprecipitation process. Rheomixer is used to make thermoplastic composites by incorporate RHA into LDPE 0, 2, 4, 6, 8, and 10 wt.%. The micrograph of the failure surface of the composite material consisting of LDPE filled with reactive hot-melt adhesive RHA particles reveals significant variations in particle sizes. In adittion XRD graph showed a decrease in intensity when 6% wt and 8% wt RHA were added. The results of thermal analysis with DSC showed an increase in the melting point of the sample with RHA reinforcement from 108.96–109.21 o C and 482.47–500.09 o C. The incorporation of RHA as a reinforcement in LDPE holds promise for its utilization as a material possessing favorable thermal characteristics suitable for industrial applications such as pipes and protective coatings, which required enhanced thermal resistance. The utilization of rice husk ash (RHA) waste imposes both environmental and economic impacts. RHA has the potential to reduce environmental pollution caused by waste and decrease the costs involved in material production.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用环保型稻壳灰渣增强LDPE热塑性塑料
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Ecological Engineering  Environmental Technology
Ecological Engineering Environmental Technology Environmental Science-Environmental Science (miscellaneous)
CiteScore
1.30
自引率
0.00%
发文量
159
审稿时长
8 weeks
期刊最新文献
Synthesis of Mn-Co-Ni Composite Electrode by Anodic and Cathodic Electrodeposition for Indirect Electro-oxidation of Phenol – Optimization of the Removal by Response Surface Methodology Protection Coordination for Wind Farm Integration in the Kosovo Transmission System Towards a Sustainable Energy Future – The Case for Smart Grids in Jordan GIS and Index-Based Methods for Assessing the Human Health Risk and Characterizing the Groundwater Quality of a Coastal Aquifer Impact of Water Stress on the Planktonic Biodiversity of the Youssef Ben Tachafine Dam (Souss Massa, Morocco)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1