Flow Behavior of Complex-Shaped Particle Mixtures in Rotary Drums: A DEM Study

IF 0.4 Q4 PHYSICS, MULTIDISCIPLINARY Bulletin of the University of Karaganda-Physics Pub Date : 2023-09-30 DOI:10.31489/2023ph3/75-85
Z. Berkinova, B. Golman
{"title":"Flow Behavior of Complex-Shaped Particle Mixtures in Rotary Drums: A DEM Study","authors":"Z. Berkinova, B. Golman","doi":"10.31489/2023ph3/75-85","DOIUrl":null,"url":null,"abstract":"Metal matrix composites hold great potential as functional materials for energy conservation applications. These composites are manufactured using powder metallurgy, which involves the incorporation of fine particles with diverse shapes. Understanding the flowability of particle mixtures with varying shapes is crucial for optimizing industrial processes. This study focuses on analyzing the flowability and flow behavior of mixtures composed of alumina and aluminum alloy particles using the discrete element method. The particle shapes are modeled to closely resemble actual particles, and their flow behavior in a rotating drum is simulated. The upper and lower dynamic angles of repose, outlines of particle bed surface, particle displacements, and particle velocity distributions were analyzed to understand the flow characteristics of complex-shaped particles. The results reveal the influence of particle shape on the flow behavior of powder mixtures, providing valuable insights for process optimization and design.","PeriodicalId":29904,"journal":{"name":"Bulletin of the University of Karaganda-Physics","volume":"66 1","pages":"0"},"PeriodicalIF":0.4000,"publicationDate":"2023-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the University of Karaganda-Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31489/2023ph3/75-85","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Metal matrix composites hold great potential as functional materials for energy conservation applications. These composites are manufactured using powder metallurgy, which involves the incorporation of fine particles with diverse shapes. Understanding the flowability of particle mixtures with varying shapes is crucial for optimizing industrial processes. This study focuses on analyzing the flowability and flow behavior of mixtures composed of alumina and aluminum alloy particles using the discrete element method. The particle shapes are modeled to closely resemble actual particles, and their flow behavior in a rotating drum is simulated. The upper and lower dynamic angles of repose, outlines of particle bed surface, particle displacements, and particle velocity distributions were analyzed to understand the flow characteristics of complex-shaped particles. The results reveal the influence of particle shape on the flow behavior of powder mixtures, providing valuable insights for process optimization and design.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
复杂形状颗粒混合物在旋转鼓中的流动特性:DEM研究
金属基复合材料作为一种具有巨大节能潜力的功能材料。这些复合材料是用粉末冶金制造的,这涉及到不同形状的细颗粒的掺入。了解不同形状的颗粒混合物的流动性对于优化工业过程至关重要。本文采用离散元法分析了氧化铝和铝合金颗粒组成的混合物的流动性和流动行为。模拟了颗粒的形状,使其与实际颗粒非常接近,并模拟了颗粒在转鼓中的流动行为。分析了复杂形状颗粒的上下动态休止角、颗粒床面轮廓、颗粒位移和颗粒速度分布,了解了颗粒的流动特性。结果揭示了颗粒形状对粉末混合物流动行为的影响,为工艺优化和设计提供了有价值的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
50.00%
发文量
32
期刊最新文献
Determination of the optimal deflection angle of the sail blade of a wind power plant Review of the current state of technology for capacitive deionization of aqueous salt solutions Formation of targets and investigation of Mn4Si7 coatings produced by magnetron sputtering Investigation of changes in phase composition and tribological properties of 65G steel during electrolyte-plasma hardening Characterization of YAG:Ce ceramics with graphene oxide
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1