Permanent Deformation Evaluation and Instability Prediction of Semi-rigid Pavement Structure Using Accelerated Pavement Testing and Finite Element Method

IF 0.8 4区 材料科学 Q4 MATERIALS SCIENCE, CHARACTERIZATION & TESTING Journal of Testing and Evaluation Pub Date : 2023-09-29 DOI:10.1520/jte20230209
Zhen Liu, Xingyu Gu, Qiao Dong
{"title":"Permanent Deformation Evaluation and Instability Prediction of Semi-rigid Pavement Structure Using Accelerated Pavement Testing and Finite Element Method","authors":"Zhen Liu, Xingyu Gu, Qiao Dong","doi":"10.1520/jte20230209","DOIUrl":null,"url":null,"abstract":"A rutting prediction method for semi-rigid pavement structures using accelerated loading tests and finite element analysis was proposed in this study. Firstly, dynamic modulus and creep tests of three pavement materials were performed by changing sizes and temperatures. The prediction equation was obtained and verified using the falling weight deflectometer test and back-calculation modulus, and it was coupled into a modified Burgers model for rutting simulation for full-scale pavement structures. Results showed that the dynamic modulus of pavement materials increased with increasing specimen sizes and decreased with increasing temperature. SUP-25 had an enormous fatigue damage value (0.419) after 5,400 times repeated loading. The error between the rutting simulation and test results was 2.87 %, indicating that the model effectively applies to multilayer composite materials. Rutting deformation at one million loading times in summer was 4.6 times that in winter. From 22 to 120 km/h, rutting deformation decreased by 72.6 %. Axle load increased by 100 %, and rutting depth increased by 46.9 %, indicating that vehicle overload should be restricted, especially in low-speed sections in high-temperature areas. Rutting deformation entered the accelerated accumulation stage when the cumulative action times were more than 25 million, which requires timely maintenance and repair of pavement structures.","PeriodicalId":17109,"journal":{"name":"Journal of Testing and Evaluation","volume":"37 1","pages":"0"},"PeriodicalIF":0.8000,"publicationDate":"2023-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Testing and Evaluation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1520/jte20230209","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, CHARACTERIZATION & TESTING","Score":null,"Total":0}
引用次数: 1

Abstract

A rutting prediction method for semi-rigid pavement structures using accelerated loading tests and finite element analysis was proposed in this study. Firstly, dynamic modulus and creep tests of three pavement materials were performed by changing sizes and temperatures. The prediction equation was obtained and verified using the falling weight deflectometer test and back-calculation modulus, and it was coupled into a modified Burgers model for rutting simulation for full-scale pavement structures. Results showed that the dynamic modulus of pavement materials increased with increasing specimen sizes and decreased with increasing temperature. SUP-25 had an enormous fatigue damage value (0.419) after 5,400 times repeated loading. The error between the rutting simulation and test results was 2.87 %, indicating that the model effectively applies to multilayer composite materials. Rutting deformation at one million loading times in summer was 4.6 times that in winter. From 22 to 120 km/h, rutting deformation decreased by 72.6 %. Axle load increased by 100 %, and rutting depth increased by 46.9 %, indicating that vehicle overload should be restricted, especially in low-speed sections in high-temperature areas. Rutting deformation entered the accelerated accumulation stage when the cumulative action times were more than 25 million, which requires timely maintenance and repair of pavement structures.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于加速路面试验和有限元法的半刚性路面结构永久变形评估与失稳预测
提出了一种基于加速加载试验和有限元分析的半刚性路面车辙预测方法。首先,通过改变尺寸和温度对3种路面材料进行了动模量和蠕变试验。采用落重偏转计试验和反算模量对预测方程进行了验证,并将其耦合到改进的Burgers模型中,用于全尺寸路面结构车辙仿真。结果表明:路面材料的动模量随试件尺寸的增大而增大,随温度的升高而减小;SUP-25在5400次重复加载后具有较大的疲劳损伤值(0.419)。车辙模拟结果与试验结果的误差为2.87%,表明该模型可以有效地应用于多层复合材料。夏季一百万次加载时车辙变形是冬季的4.6倍。从22 km/h到120 km/h,车辙变形减少了72.6%。轴荷增加100%,车辙深度增加46.9%,表明应限制车辆超载,特别是在高温地区的低速路段。车辙变形在累计作用次数超过2500万次后进入加速积累阶段,需要及时对路面结构进行维护和修复。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Testing and Evaluation
Journal of Testing and Evaluation 工程技术-材料科学:表征与测试
CiteScore
2.30
自引率
8.30%
发文量
221
审稿时长
6.7 months
期刊介绍: This journal is published in six issues per year. Some issues, in whole or in part, may be Special Issues focused on a topic of interest to our readers. This flagship ASTM journal is a multi-disciplinary forum for the applied sciences and engineering. Published bimonthly, the Journal of Testing and Evaluation presents new technical information, derived from field and laboratory testing, on the performance, quantitative characterization, and evaluation of materials. Papers present new methods and data along with critical evaluations; report users'' experience with test methods and results of interlaboratory testing and analysis; and stimulate new ideas in the fields of testing and evaluation. Major topic areas are fatigue and fracture, mechanical testing, and fire testing. Also publishes review articles, technical notes, research briefs and commentary.
期刊最新文献
Influence of Soil Excavation on Bearing Behavior of Pile Group Foundation Composed of Underpinning Piles and Existing Piles Comparison between Four-Probe and Two-Probe Electrical Resistivity Measurement to Monitor the Curing and Piezoresistivity Behavior of Smart Cement Paste Modified with Waste Steel Slag and Green Nano-magnetite Study on the Compressive Properties of RPC Restrained by CFRP Sheet under Low-Temperature Curing A Statistical Study of Arien Sequences for an H.264 Prediction Module Lower Complexity Micro-constructive Damage Model of Dry-Wet Cyclic Red Clay Based on Weibull Distribution
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1