Permanent Deformation Evaluation and Instability Prediction of Semi-rigid Pavement Structure Using Accelerated Pavement Testing and Finite Element Method
{"title":"Permanent Deformation Evaluation and Instability Prediction of Semi-rigid Pavement Structure Using Accelerated Pavement Testing and Finite Element Method","authors":"Zhen Liu, Xingyu Gu, Qiao Dong","doi":"10.1520/jte20230209","DOIUrl":null,"url":null,"abstract":"A rutting prediction method for semi-rigid pavement structures using accelerated loading tests and finite element analysis was proposed in this study. Firstly, dynamic modulus and creep tests of three pavement materials were performed by changing sizes and temperatures. The prediction equation was obtained and verified using the falling weight deflectometer test and back-calculation modulus, and it was coupled into a modified Burgers model for rutting simulation for full-scale pavement structures. Results showed that the dynamic modulus of pavement materials increased with increasing specimen sizes and decreased with increasing temperature. SUP-25 had an enormous fatigue damage value (0.419) after 5,400 times repeated loading. The error between the rutting simulation and test results was 2.87 %, indicating that the model effectively applies to multilayer composite materials. Rutting deformation at one million loading times in summer was 4.6 times that in winter. From 22 to 120 km/h, rutting deformation decreased by 72.6 %. Axle load increased by 100 %, and rutting depth increased by 46.9 %, indicating that vehicle overload should be restricted, especially in low-speed sections in high-temperature areas. Rutting deformation entered the accelerated accumulation stage when the cumulative action times were more than 25 million, which requires timely maintenance and repair of pavement structures.","PeriodicalId":17109,"journal":{"name":"Journal of Testing and Evaluation","volume":"37 1","pages":"0"},"PeriodicalIF":0.8000,"publicationDate":"2023-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Testing and Evaluation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1520/jte20230209","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, CHARACTERIZATION & TESTING","Score":null,"Total":0}
引用次数: 1
Abstract
A rutting prediction method for semi-rigid pavement structures using accelerated loading tests and finite element analysis was proposed in this study. Firstly, dynamic modulus and creep tests of three pavement materials were performed by changing sizes and temperatures. The prediction equation was obtained and verified using the falling weight deflectometer test and back-calculation modulus, and it was coupled into a modified Burgers model for rutting simulation for full-scale pavement structures. Results showed that the dynamic modulus of pavement materials increased with increasing specimen sizes and decreased with increasing temperature. SUP-25 had an enormous fatigue damage value (0.419) after 5,400 times repeated loading. The error between the rutting simulation and test results was 2.87 %, indicating that the model effectively applies to multilayer composite materials. Rutting deformation at one million loading times in summer was 4.6 times that in winter. From 22 to 120 km/h, rutting deformation decreased by 72.6 %. Axle load increased by 100 %, and rutting depth increased by 46.9 %, indicating that vehicle overload should be restricted, especially in low-speed sections in high-temperature areas. Rutting deformation entered the accelerated accumulation stage when the cumulative action times were more than 25 million, which requires timely maintenance and repair of pavement structures.
期刊介绍:
This journal is published in six issues per year. Some issues, in whole or in part, may be Special Issues focused on a topic of interest to our readers.
This flagship ASTM journal is a multi-disciplinary forum for the applied sciences and engineering. Published bimonthly, the Journal of Testing and Evaluation presents new technical information, derived from field and laboratory testing, on the performance, quantitative characterization, and evaluation of materials. Papers present new methods and data along with critical evaluations; report users'' experience with test methods and results of interlaboratory testing and analysis; and stimulate new ideas in the fields of testing and evaluation.
Major topic areas are fatigue and fracture, mechanical testing, and fire testing. Also publishes review articles, technical notes, research briefs and commentary.