Maximilian Autenrieth, David A. Van Dyk, Roberto Trotta, David C. Stenning
{"title":"Stratified learning: A general‐purpose statistical method for improved learning under covariate shift","authors":"Maximilian Autenrieth, David A. Van Dyk, Roberto Trotta, David C. Stenning","doi":"10.1002/sam.11643","DOIUrl":null,"url":null,"abstract":"Abstract We propose a simple, statistically principled, and theoretically justified method to improve supervised learning when the training set is not representative, a situation known as covariate shift. We build upon a well‐established methodology in causal inference and show that the effects of covariate shift can be reduced or eliminated by conditioning on propensity scores. In practice, this is achieved by fitting learners within strata constructed by partitioning the data based on the estimated propensity scores, leading to approximately balanced covariates and much‐improved target prediction. We refer to the overall method as Stratified Learning, or StratLearn . We demonstrate the effectiveness of this general‐purpose method on two contemporary research questions in cosmology, outperforming state‐of‐the‐art importance weighting methods. We obtain the best‐reported AUC (0.958) on the updated “Supernovae photometric classification challenge,” and we improve upon existing conditional density estimation of galaxy redshift from Sloan Digital Sky Survey (SDSS) data.","PeriodicalId":48684,"journal":{"name":"Statistical Analysis and Data Mining","volume":"44 1","pages":"0"},"PeriodicalIF":2.1000,"publicationDate":"2023-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistical Analysis and Data Mining","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/sam.11643","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 1
Abstract
Abstract We propose a simple, statistically principled, and theoretically justified method to improve supervised learning when the training set is not representative, a situation known as covariate shift. We build upon a well‐established methodology in causal inference and show that the effects of covariate shift can be reduced or eliminated by conditioning on propensity scores. In practice, this is achieved by fitting learners within strata constructed by partitioning the data based on the estimated propensity scores, leading to approximately balanced covariates and much‐improved target prediction. We refer to the overall method as Stratified Learning, or StratLearn . We demonstrate the effectiveness of this general‐purpose method on two contemporary research questions in cosmology, outperforming state‐of‐the‐art importance weighting methods. We obtain the best‐reported AUC (0.958) on the updated “Supernovae photometric classification challenge,” and we improve upon existing conditional density estimation of galaxy redshift from Sloan Digital Sky Survey (SDSS) data.
期刊介绍:
Statistical Analysis and Data Mining addresses the broad area of data analysis, including statistical approaches, machine learning, data mining, and applications. Topics include statistical and computational approaches for analyzing massive and complex datasets, novel statistical and/or machine learning methods and theory, and state-of-the-art applications with high impact. Of special interest are articles that describe innovative analytical techniques, and discuss their application to real problems, in such a way that they are accessible and beneficial to domain experts across science, engineering, and commerce.
The focus of the journal is on papers which satisfy one or more of the following criteria:
Solve data analysis problems associated with massive, complex datasets
Develop innovative statistical approaches, machine learning algorithms, or methods integrating ideas across disciplines, e.g., statistics, computer science, electrical engineering, operation research.
Formulate and solve high-impact real-world problems which challenge existing paradigms via new statistical and/or computational models
Provide survey to prominent research topics.