Sambuddha Majumder, Krishnanunni A, Sooraj Ravindran
{"title":"Optimization of p-i-n GaAs/AlGaAs Heterojunction Nanowire Solar Cell for Improved Optical and Electrical Properties","authors":"Sambuddha Majumder, Krishnanunni A, Sooraj Ravindran","doi":"10.1364/josab.492196","DOIUrl":null,"url":null,"abstract":"GaAs/AlGaAs based nanowires are promising candidates for photovoltaic applications due to their high absorption coefficient, low surface reflection, and efficient collection of photogenerated carriers. This study focuses on optimizing the performance of p-i-n GaAs/AlGaAs nanowire solar cell arrays having a radial junction using optoelectronic simulations. The research investigates the optimal doping for the GaAs core and AlGaAs shell, as well as the impact of shell thickness and junction positions on solar cell performance. Additionally, the study examines the effect of various surface effects, including the presence of surface traps, surface recombination velocities, and associated lifetime degradation. Our studies find that a high doping density for the shell and core region is crucial for achieving an appropriate band configuration and carrier extraction. It also highlights that having a larger doping density is more important than having a larger lifetime. Finally, the research examines the effect of different aluminum compositions on photogeneration inside the nanowire and shows that having a high aluminum composition can confine most photogeneration to inner GaAs regions, potentially allowing for thicker AlGaAs shells, which can efficiently prevent surface recombination.","PeriodicalId":17280,"journal":{"name":"Journal of The Optical Society of America B-optical Physics","volume":"47 1","pages":"0"},"PeriodicalIF":1.8000,"publicationDate":"2023-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of The Optical Society of America B-optical Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1364/josab.492196","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0
Abstract
GaAs/AlGaAs based nanowires are promising candidates for photovoltaic applications due to their high absorption coefficient, low surface reflection, and efficient collection of photogenerated carriers. This study focuses on optimizing the performance of p-i-n GaAs/AlGaAs nanowire solar cell arrays having a radial junction using optoelectronic simulations. The research investigates the optimal doping for the GaAs core and AlGaAs shell, as well as the impact of shell thickness and junction positions on solar cell performance. Additionally, the study examines the effect of various surface effects, including the presence of surface traps, surface recombination velocities, and associated lifetime degradation. Our studies find that a high doping density for the shell and core region is crucial for achieving an appropriate band configuration and carrier extraction. It also highlights that having a larger doping density is more important than having a larger lifetime. Finally, the research examines the effect of different aluminum compositions on photogeneration inside the nanowire and shows that having a high aluminum composition can confine most photogeneration to inner GaAs regions, potentially allowing for thicker AlGaAs shells, which can efficiently prevent surface recombination.
期刊介绍:
The Journal of the Optical Society of America B (JOSA B) is a general optics research journal that complements JOSA A. It emphasizes scientific research on the fundamentals of the interaction of light with matter such as quantum optics, nonlinear optics, and laser physics. Topics include:
Advanced Instrumentation and Measurements
Fiber Optics and Fiber Lasers
Lasers and Other Light Sources from THz to XUV
Light-Induced Phenomena
Nonlinear and High Field Optics
Optical Materials
Optics Modes and Structured Light
Optomechanics
Metamaterials
Nanomaterials
Photonics and Semiconductor Optics
Physical Optics
Plasmonics
Quantum Optics and Entanglement
Quantum Key Distribution
Spectroscopy and Atomic or Molecular Optics
Superresolution and Advanced Imaging
Surface Optics
Ultrafast Optical Phenomena
Wave Guiding and Optical Confinement
JOSA B considers original research articles, feature issue contributions, invited reviews and tutorials, and comments on published articles.