{"title":"Selection methodology for additive manufacturing processes considering design, material, and manufacturability","authors":"Suraj Goala, Prabir Sarkar","doi":"10.1108/rpj-05-2023-0155","DOIUrl":null,"url":null,"abstract":"Purpose One of the critical reasons for the nonacceptance of additive manufacturing (AM) processes is the lack of understanding and structured knowledge of design for additive manufacturing (DfAM). This paper aims to assist designers to select the appropriate AM technology for product development or redesign. Using the suggestion provided by the design assist tool, the user’s design alterations depend on their ability to interpret the suggestion into the design without affecting the design’s primary objective. Design/methodology/approach This research reports the development of a tool that evaluates the efficacy values for all seven major standard AM processes by considering design parameters, benchmark standards within the processes and their material efficacies. In this research, the tool provides analytical and visual approaches to suggestion and assistance. Seventeen design parameters and seven benchmarking standards are used to evaluate the proposed product and design quality value. The full factorial design approach has been used to evaluate the DfAM aspects, design quality and design complexity. Findings The outcome is evaluated by the product and design quality value, material suit and material-product-design (MPD) value proposed in this work for a comparative assessment of the AM processes for a design. The higher the MPD value, the better the process. The visual aspect of the evaluation uses spider diagrams, which are evaluated analytically to confirm the results’ appropriateness with the proposed methodology. Originality/value The data used in the database is assumed to make the study comprehensive. The output aims to help opt for the best process out of the seven AM techniques for better and optimized manufacturing. This, as per the authors’ knowledge, is not available yet.","PeriodicalId":20981,"journal":{"name":"Rapid Prototyping Journal","volume":"497 1","pages":"0"},"PeriodicalIF":3.4000,"publicationDate":"2023-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Rapid Prototyping Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1108/rpj-05-2023-0155","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Purpose One of the critical reasons for the nonacceptance of additive manufacturing (AM) processes is the lack of understanding and structured knowledge of design for additive manufacturing (DfAM). This paper aims to assist designers to select the appropriate AM technology for product development or redesign. Using the suggestion provided by the design assist tool, the user’s design alterations depend on their ability to interpret the suggestion into the design without affecting the design’s primary objective. Design/methodology/approach This research reports the development of a tool that evaluates the efficacy values for all seven major standard AM processes by considering design parameters, benchmark standards within the processes and their material efficacies. In this research, the tool provides analytical and visual approaches to suggestion and assistance. Seventeen design parameters and seven benchmarking standards are used to evaluate the proposed product and design quality value. The full factorial design approach has been used to evaluate the DfAM aspects, design quality and design complexity. Findings The outcome is evaluated by the product and design quality value, material suit and material-product-design (MPD) value proposed in this work for a comparative assessment of the AM processes for a design. The higher the MPD value, the better the process. The visual aspect of the evaluation uses spider diagrams, which are evaluated analytically to confirm the results’ appropriateness with the proposed methodology. Originality/value The data used in the database is assumed to make the study comprehensive. The output aims to help opt for the best process out of the seven AM techniques for better and optimized manufacturing. This, as per the authors’ knowledge, is not available yet.
期刊介绍:
Rapid Prototyping Journal concentrates on development in a manufacturing environment but covers applications in other areas, such as medicine and construction. All papers published in this field are scattered over a wide range of international publications, none of which actually specializes in this particular discipline, this journal is a vital resource for anyone involved in additive manufacturing. It draws together important refereed papers on all aspects of AM from distinguished sources all over the world, to give a truly international perspective on this dynamic and exciting area.
-Benchmarking – certification and qualification in AM-
Mass customisation in AM-
Design for AM-
Materials aspects-
Reviews of processes/applications-
CAD and other software aspects-
Enhancement of existing processes-
Integration with design process-
Management implications-
New AM processes-
Novel applications of AM parts-
AM for tooling-
Medical applications-
Reverse engineering in relation to AM-
Additive & Subtractive hybrid manufacturing-
Industrialisation