{"title":"High-temperature mechanical properties evaluation of 310S stainless steel","authors":"Jingwei Zhang, Zhicheng Li, Li Lin, Kanglin Liu","doi":"10.1080/09603409.2023.2281111","DOIUrl":null,"url":null,"abstract":"ABSTRACTThe high-temperature mechanical properties of 310S stainless steel were investigated by uniaxial tensile tests and small punch tests at the temperature from 20℃ to 600℃, and the relationship between the mechanical properties (σYS ,σUTS) and the characteristic loads (Fy, Fm) was established. The results revealed that with increasing temperature, the mechanical properties of 310S decrease, and the characteristic loads obtained by Fy_Mao, Fy_EN and Fy_E3205 are more appropriate for determining the yield strength of materials at high temperatures particularly for Fy_E3205. The fracture pattern observed in the SPT specimens indicated a mixed tough-brittle fracture accompanied by the characteristics of cleavage fracture. Additionally, the ultimate tensile strength of the material and the maximum load Fm increased slightly at 400 ℃ compared to 300 ℃ due to the precipitation of a large number of granular carbides and the increase in the grain size.KEYWORDS: 310s steelSmall punch testHigh temperatureMechanical propertiesFracture Disclosure statementNo potential conflict of interest was reported by the author(s).Additional informationFundingThe work was supported by the National Natural Science Foundation of China (No.51705079), Natural Science Foundation of Fujian Province (No.2018J01767), Open Fund of Fujian Key Laboratory of Energy Measurement(Fujian Metrology Institute) (NYJL-KFKT-2022-02).","PeriodicalId":49877,"journal":{"name":"Materials at High Temperatures","volume":"113 33","pages":"0"},"PeriodicalIF":1.0000,"publicationDate":"2023-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials at High Temperatures","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/09603409.2023.2281111","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
ABSTRACTThe high-temperature mechanical properties of 310S stainless steel were investigated by uniaxial tensile tests and small punch tests at the temperature from 20℃ to 600℃, and the relationship between the mechanical properties (σYS ,σUTS) and the characteristic loads (Fy, Fm) was established. The results revealed that with increasing temperature, the mechanical properties of 310S decrease, and the characteristic loads obtained by Fy_Mao, Fy_EN and Fy_E3205 are more appropriate for determining the yield strength of materials at high temperatures particularly for Fy_E3205. The fracture pattern observed in the SPT specimens indicated a mixed tough-brittle fracture accompanied by the characteristics of cleavage fracture. Additionally, the ultimate tensile strength of the material and the maximum load Fm increased slightly at 400 ℃ compared to 300 ℃ due to the precipitation of a large number of granular carbides and the increase in the grain size.KEYWORDS: 310s steelSmall punch testHigh temperatureMechanical propertiesFracture Disclosure statementNo potential conflict of interest was reported by the author(s).Additional informationFundingThe work was supported by the National Natural Science Foundation of China (No.51705079), Natural Science Foundation of Fujian Province (No.2018J01767), Open Fund of Fujian Key Laboratory of Energy Measurement(Fujian Metrology Institute) (NYJL-KFKT-2022-02).
期刊介绍:
Materials at High Temperatures welcomes contributions relating to high temperature applications in the energy generation, aerospace, chemical and process industries. The effects of high temperatures and extreme environments on the corrosion and oxidation, fatigue, creep, strength and wear of metallic alloys, ceramics, intermetallics, and refractory and composite materials relative to these industries are covered.
Papers on the modelling of behaviour and life prediction are also welcome, provided these are validated by experimental data and explicitly linked to actual or potential applications. Contributions addressing the needs of designers and engineers (e.g. standards and codes of practice) relative to the areas of interest of this journal also fall within the scope. The term ''high temperatures'' refers to the subsequent temperatures of application and not, for example, to those of processing itself.
Materials at High Temperatures publishes regular thematic issues on topics of current interest. Proposals for issues are welcomed; please contact one of the Editors with details.