{"title":"Modeling User Choice Behavior under Data Corruption: Robust Learning of the Latent Decision Threshold Model","authors":"Feng Lin, Xiaoning Qian, Bobak Mortazavi, Zhangyang Wang, Shuai Huang, Cynthia Chen","doi":"10.1080/24725854.2023.2279080","DOIUrl":null,"url":null,"abstract":"AbstractRecent years have witnessed the emergence of many new mobile Apps and user-centered systems that interact with users by offering choices with rewards. These applications have been promising to address challenging societal problems such as congestion in transportation and behavior changes for healthier lifestyles. Considerable research efforts have been devoted to model the user behaviors in these new applications. However, as real-world user data is often prone to data corruptions, the success of these models hinges on a robust learning method. Building on the recently proposed Latent Decision Threshold (LDT) model, this paper shows that, among the existing robust learning frameworks, the L0 norm based framework can outperform other state-of-the-art methods in terms of prediction accuracy and model estimation. And based on the L0 norm framework, we further develop a user screening algorithm to identify potential bad actors.Keywords: Choice Behavior ModelingLatent Decision Threshold ModelRobust learningData CorruptionBad Actor DetectionDisclaimerAs a service to authors and researchers we are providing this version of an accepted manuscript (AM). Copyediting, typesetting, and review of the resulting proofs will be undertaken on this manuscript before final publication of the Version of Record (VoR). During production and pre-press, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal relate to these versions also.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2023-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/24725854.2023.2279080","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
Abstract
AbstractRecent years have witnessed the emergence of many new mobile Apps and user-centered systems that interact with users by offering choices with rewards. These applications have been promising to address challenging societal problems such as congestion in transportation and behavior changes for healthier lifestyles. Considerable research efforts have been devoted to model the user behaviors in these new applications. However, as real-world user data is often prone to data corruptions, the success of these models hinges on a robust learning method. Building on the recently proposed Latent Decision Threshold (LDT) model, this paper shows that, among the existing robust learning frameworks, the L0 norm based framework can outperform other state-of-the-art methods in terms of prediction accuracy and model estimation. And based on the L0 norm framework, we further develop a user screening algorithm to identify potential bad actors.Keywords: Choice Behavior ModelingLatent Decision Threshold ModelRobust learningData CorruptionBad Actor DetectionDisclaimerAs a service to authors and researchers we are providing this version of an accepted manuscript (AM). Copyediting, typesetting, and review of the resulting proofs will be undertaken on this manuscript before final publication of the Version of Record (VoR). During production and pre-press, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal relate to these versions also.