Dye Degradation, Antimicrobial Activity, and Molecular Docking Analysis of Samarium-Grafted Carbon Nitride Doped-Bismuth Oxobromide Quantum Dots

IF 4.4 4区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES Global Challenges Pub Date : 2023-11-10 DOI:10.1002/gch2.202300118
Shams Rani, Muhammad Imran, Ali Haider, Anum Shahzadi, Anwar Ul-Hamid, H. H. Somaily, Sawaira Moeen, Mahreen Khan, Walid Nabgan, Muhammad Ikram
{"title":"Dye Degradation, Antimicrobial Activity, and Molecular Docking Analysis of Samarium-Grafted Carbon Nitride Doped-Bismuth Oxobromide Quantum Dots","authors":"Shams Rani,&nbsp;Muhammad Imran,&nbsp;Ali Haider,&nbsp;Anum Shahzadi,&nbsp;Anwar Ul-Hamid,&nbsp;H. H. Somaily,&nbsp;Sawaira Moeen,&nbsp;Mahreen Khan,&nbsp;Walid Nabgan,&nbsp;Muhammad Ikram","doi":"10.1002/gch2.202300118","DOIUrl":null,"url":null,"abstract":"<p>Various concentrations of samarium-grafted-carbon nitride (Sm-g-C<sub>3</sub>N<sub>4</sub>) doped-bismuth oxobromide (BiOBr) quantum dots (QDs) are prepared by the co-precipitation method. Elemental evaluation, morphological, optical, and functional group assessment are studied employing characterization techniques. Based on the XRD pattern analysis, it is determined that BiOBr exhibits a tetragonal crystal structure. The electronic spectroscopy revealed an absorption peak for BiOBr at 315 nm and the bandgap energy (<i>E</i><sub>g</sub>) decreasing from 3.9 to 3.8 eV with the insertion of Sm-g-C<sub>3</sub>N<sub>4</sub>. The presence of vibrational modes related to BiOBr at 550 cm<sup>−1</sup> is confirmed through FTIR spectra. TEM revealed that pure BiOBr possessed non-uniform QDS, and agglomeration increased with the addition of Sm-g-C<sub>3</sub>N<sub>4</sub>. The catalytic performance of Sm-g-C<sub>3</sub>N<sub>4</sub> into BiOBr (6 mL) in a neutral medium toward rhodamine B exhibited excellent results (99.66%). The bactericidal activity is evaluated against multi-drug resistance (MDR) <i>Escherichia coli</i> once the surface area is increased by dopant and the measured inhibition zone is assessed to be 3.65 mm. Molecular docking results supported the in vitro bactericidal potential of Sm-g-C<sub>3</sub>N<sub>4</sub> and Sm-g-C<sub>3</sub>N<sub>4</sub> doped-BiOBr as DNA gyrase<i><sub>E. coli</sub></i> inhibitors. This study shows that the novel Sm-g-C<sub>3</sub>N<sub>4</sub> doped-BiOBr is a better catalyst that increases specific semiconductor's catalytic activity (CA).</p>","PeriodicalId":12646,"journal":{"name":"Global Challenges","volume":"7 12","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2023-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/gch2.202300118","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Global Challenges","FirstCategoryId":"103","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/gch2.202300118","RegionNum":4,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Various concentrations of samarium-grafted-carbon nitride (Sm-g-C3N4) doped-bismuth oxobromide (BiOBr) quantum dots (QDs) are prepared by the co-precipitation method. Elemental evaluation, morphological, optical, and functional group assessment are studied employing characterization techniques. Based on the XRD pattern analysis, it is determined that BiOBr exhibits a tetragonal crystal structure. The electronic spectroscopy revealed an absorption peak for BiOBr at 315 nm and the bandgap energy (Eg) decreasing from 3.9 to 3.8 eV with the insertion of Sm-g-C3N4. The presence of vibrational modes related to BiOBr at 550 cm−1 is confirmed through FTIR spectra. TEM revealed that pure BiOBr possessed non-uniform QDS, and agglomeration increased with the addition of Sm-g-C3N4. The catalytic performance of Sm-g-C3N4 into BiOBr (6 mL) in a neutral medium toward rhodamine B exhibited excellent results (99.66%). The bactericidal activity is evaluated against multi-drug resistance (MDR) Escherichia coli once the surface area is increased by dopant and the measured inhibition zone is assessed to be 3.65 mm. Molecular docking results supported the in vitro bactericidal potential of Sm-g-C3N4 and Sm-g-C3N4 doped-BiOBr as DNA gyraseE. coli inhibitors. This study shows that the novel Sm-g-C3N4 doped-BiOBr is a better catalyst that increases specific semiconductor's catalytic activity (CA).

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
钐接枝氮化碳掺杂氧化铋量子点的染料降解、抗菌活性和分子对接分析
采用共沉淀法制备了不同浓度的掺杂氧化溴化铋(BiOBr)的钐接枝氮化碳(Sm-g-C3N4)量子点(QDs)。利用表征技术研究了元素评估、形态、光学和官能团评估。根据 XRD 图谱分析,确定 BiOBr 呈四方晶体结构。电子光谱显示,BiOBr 在 315 纳米处有一个吸收峰,带隙能(Eg)随着 Sm-g-C3N4 的插入从 3.9 eV 下降到 3.8 eV。傅立叶变换红外光谱证实了在 550 cm-1 处存在与 BiOBr 有关的振动模式。TEM 显示,纯 BiOBr 具有不均匀的 QDS,并且随着 Sm-g-C3N4 的加入,团聚程度增加。在中性介质中,Sm-g-C3N4 加入 BiOBr(6 mL)对罗丹明 B 的催化性能表现出色(99.66%)。通过掺杂剂增加表面积后,对耐多药(MDR)大肠杆菌的杀菌活性进行了评估,测得抑菌区为 3.65 毫米。分子对接结果支持 Sm-g-C3N4 和 Sm-g-C3N4 掺杂 BiOBr 作为 DNA 回旋酶大肠杆菌抑制剂的体外杀菌潜力。这项研究表明,新型掺杂Sm-g-C3N4-BiOBr是一种更好的催化剂,能提高特定半导体的催化活性(CA)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Global Challenges
Global Challenges MULTIDISCIPLINARY SCIENCES-
CiteScore
8.70
自引率
0.00%
发文量
79
审稿时长
16 weeks
期刊最新文献
Issue Information Advancing Economical and Environmentally Conscious Electrification: A Comprehensive Framework for Microgrid Design in Off-Grid Regions Issue Information New Insight into Mercury Removal from Fish Meat Using a Single-Component Solution Containing cysteine Photocatalytic Hydrogen Production Using TiO2-based Catalysts: A Review
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1