A Normalizing Field Flow Induced Two-Stage Stochastic Homogenization Method for Random Composite Materials

IF 2.6 3区 物理与天体物理 Q1 PHYSICS, MATHEMATICAL Communications in Computational Physics Pub Date : 2023-06-01 DOI:10.4208/cicp.oa-2023-0007
Zihao Yang, Xintong Wang, Xiaofei Guan, Jizu Huang null, Xixin Wu
{"title":"A Normalizing Field Flow Induced Two-Stage Stochastic Homogenization Method for Random Composite Materials","authors":"Zihao Yang, Xintong Wang, Xiaofei Guan, Jizu Huang null, Xixin Wu","doi":"10.4208/cicp.oa-2023-0007","DOIUrl":null,"url":null,"abstract":". The traditional stochastic homogenization method can obtain homogenized solutions of elliptic problems with stationary random coefficients. However, many random composite materials in scientific and engineering computing do not satisfy the stationary assumption. To overcome the difficulty, we propose a normalizing field flow induced two-stage stochastic homogenization method to efficiently solve the random elliptic problem with non-stationary coefficients. By applying the two-stage stochastic homogenization method, the original elliptic equation with random and fast oscillatory coefficients is approximated as an equivalent elliptic equation, where the equivalent coefficients are obtained by solving a set of cell problems. Without the stationary assumption, the number of cell problems is large and the corresponding computational cost is high. To improve the efficiency, we apply the normalizing field flow model to learn a reference Gaussian field for the random equivalent coefficients based on a small amount of data, which is obtained by solving the cell problems with the finite element method. Numerical results demonstrate that the newly proposed method is efficient and accurate in tackling high dimensional partial differential equations in composite materials with complex random microstructures","PeriodicalId":50661,"journal":{"name":"Communications in Computational Physics","volume":"21 1","pages":"0"},"PeriodicalIF":2.6000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Computational Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4208/cicp.oa-2023-0007","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0

Abstract

. The traditional stochastic homogenization method can obtain homogenized solutions of elliptic problems with stationary random coefficients. However, many random composite materials in scientific and engineering computing do not satisfy the stationary assumption. To overcome the difficulty, we propose a normalizing field flow induced two-stage stochastic homogenization method to efficiently solve the random elliptic problem with non-stationary coefficients. By applying the two-stage stochastic homogenization method, the original elliptic equation with random and fast oscillatory coefficients is approximated as an equivalent elliptic equation, where the equivalent coefficients are obtained by solving a set of cell problems. Without the stationary assumption, the number of cell problems is large and the corresponding computational cost is high. To improve the efficiency, we apply the normalizing field flow model to learn a reference Gaussian field for the random equivalent coefficients based on a small amount of data, which is obtained by solving the cell problems with the finite element method. Numerical results demonstrate that the newly proposed method is efficient and accurate in tackling high dimensional partial differential equations in composite materials with complex random microstructures
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
随机复合材料的归一化场流诱导两阶段随机均匀化方法
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Communications in Computational Physics
Communications in Computational Physics 物理-物理:数学物理
CiteScore
4.70
自引率
5.40%
发文量
84
审稿时长
9 months
期刊介绍: Communications in Computational Physics (CiCP) publishes original research and survey papers of high scientific value in computational modeling of physical problems. Results in multi-physics and multi-scale innovative computational methods and modeling in all physical sciences will be featured.
期刊最新文献
A Model-Data Asymptotic-Preserving Neural Network Method Based on Micro-Macro Decomposition for Gray Radiative Transfer Equations A Causality-DeepONet for Causal Responses of Linear Dynamical Systems JefiPIC: A 3-D Full Electromagnetic Particle-in-Cell Simulator Based on Jefimenko’s Equations on GPU A Comparative Study of Hydrodynamic Lattice Boltzmann Equation in Phase-Field-Based Multiphase Flow Models Finite-Volume TENO Scheme with a New Cell-Interface Flux Evaluation Strategy for Unstructured Meshes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1