3D printing with tension and compaction: prevention of fiber waviness in 3D-printed continuous carbon fiber–reinforced thermoplastics

IF 1.8 3区 材料科学 Q3 MATERIALS SCIENCE, COMPOSITES Advanced Composite Materials Pub Date : 2023-09-18 DOI:10.1080/09243046.2023.2260233
Naruki Ichihara, Masahito Ueda, Kentaro Kajiwara, Antoine Le Duigou, Mickael Castro
{"title":"3D printing with tension and compaction: prevention of fiber waviness in 3D-printed continuous carbon fiber–reinforced thermoplastics","authors":"Naruki Ichihara, Masahito Ueda, Kentaro Kajiwara, Antoine Le Duigou, Mickael Castro","doi":"10.1080/09243046.2023.2260233","DOIUrl":null,"url":null,"abstract":"AbstractThe 3D printing of continuous carbon fiber–reinforced thermoplastics (c-CFRTP) results in fiber waviness and voids that limit mechanical performance. The effects of tensioning and compaction forces during 3D printing were experimentally studied to suppress fiber waviness. A tensioning force was generated along the filament to straighten the fibers by asynchronously controlling the filament feeding and print speeds. A compaction force was applied through the nozzle tip by setting the layer height to reduce the voids. Microscopic images of specimen cross-sections and surfaces indicated a reduction in fiber waviness and voids after these treatments, and three-point bending tests demonstrated improved mechanical properties. This combination of tensioning and compaction forces achieved 28% and 45% higher bending stiffness and strength, respectively. Tensioning and compaction forces are important printing parameters for the 3D printing of high-performance c-CFRTP.Keywords: Polymer-matrix compositesmechanical propertiesmechanical testing3D printing Disclosure statementNo potential conflict of interest was reported by the authors.Data availability statementThe data that support the findings of this study are available from the corresponding author, N. Ichihara, upon reasonable request.Additional informationFundingThis work was supported by the Japan Society for the Promotion of Science (JSPS) KAKENHI (Grant No. 22K20415). The synchrotron radiation experiments were performed at BL46XU of SPring-8 with the approval of the Japan Synchrotron Radiation Research Institute (JASRI) (Proposal No. 2018B1842).","PeriodicalId":7291,"journal":{"name":"Advanced Composite Materials","volume":"6 1","pages":"0"},"PeriodicalIF":1.8000,"publicationDate":"2023-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Composite Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/09243046.2023.2260233","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, COMPOSITES","Score":null,"Total":0}
引用次数: 0

Abstract

AbstractThe 3D printing of continuous carbon fiber–reinforced thermoplastics (c-CFRTP) results in fiber waviness and voids that limit mechanical performance. The effects of tensioning and compaction forces during 3D printing were experimentally studied to suppress fiber waviness. A tensioning force was generated along the filament to straighten the fibers by asynchronously controlling the filament feeding and print speeds. A compaction force was applied through the nozzle tip by setting the layer height to reduce the voids. Microscopic images of specimen cross-sections and surfaces indicated a reduction in fiber waviness and voids after these treatments, and three-point bending tests demonstrated improved mechanical properties. This combination of tensioning and compaction forces achieved 28% and 45% higher bending stiffness and strength, respectively. Tensioning and compaction forces are important printing parameters for the 3D printing of high-performance c-CFRTP.Keywords: Polymer-matrix compositesmechanical propertiesmechanical testing3D printing Disclosure statementNo potential conflict of interest was reported by the authors.Data availability statementThe data that support the findings of this study are available from the corresponding author, N. Ichihara, upon reasonable request.Additional informationFundingThis work was supported by the Japan Society for the Promotion of Science (JSPS) KAKENHI (Grant No. 22K20415). The synchrotron radiation experiments were performed at BL46XU of SPring-8 with the approval of the Japan Synchrotron Radiation Research Institute (JASRI) (Proposal No. 2018B1842).
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
具有张力和压实的3D打印:防止3D打印连续碳纤维增强热塑性塑料中的纤维波纹
摘要连续碳纤维增强热塑性塑料(c-CFRTP)的3D打印导致纤维波纹和空隙,限制了机械性能。实验研究了3D打印过程中拉伸力和压实力对抑制纤维波纹的影响。通过异步控制送丝速度和打印速度,沿纤维产生张力,使纤维拉直。通过设置层高度来减小空隙,通过喷嘴尖端施加压实力。试样横截面和表面的显微图像表明,经过这些处理后,纤维的波纹度和空隙减少了,三点弯曲测试表明力学性能得到了改善。这种张紧力和压实力的组合分别使弯曲刚度和强度提高28%和45%。张紧力和压实力是高性能c-CFRTP 3D打印的重要打印参数。关键词:聚合物基复合材料力学性能力学测试3d打印公开声明作者未报告潜在利益冲突数据可得性声明支持本研究结果的数据可根据合理要求从通讯作者N. Ichihara处获得。本研究得到了日本科学促进会(JSPS) KAKENHI(批准号22K20415)的支持。同步辐射实验由日本同步辐射研究所(JASRI)批准(提案号2018B1842)在SPring-8的BL46XU上进行。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Advanced Composite Materials
Advanced Composite Materials 工程技术-材料科学:复合
CiteScore
5.00
自引率
20.70%
发文量
54
审稿时长
3 months
期刊介绍: "Advanced Composite Materials (ACM), a bi-monthly publication of the Japan Society for Composite Materials and the Korean Society for Composite Materials, provides an international forum for researchers, manufacturers and designers who are working in the field of composite materials and their structures. Issues contain articles on all aspects of current scientific and technological progress in this interdisciplinary field. The topics of interest are physical, chemical, mechanical and other properties of advanced composites as well as their constituent materials; experimental and theoretical studies relating microscopic to macroscopic behavior; testing and evaluation with emphasis on environmental effects and reliability; novel techniques of fabricating various types of composites and of forming structural components utilizing these materials; design and analysis for specific applications. Advanced Composite Materials publishes refereed original research papers, review papers, technical papers and short notes as well as some translated papers originally published in the Journal of the Japan Society for Composite Materials. Issues also contain news items such as information on new materials and their processing."
期刊最新文献
Structural health monitoring of type 4 composite fuel tank based on correlation between ultrasonic attenuation and crack density Comparison of post-impact residual strength ratio between hybrid filament-wound cylinder and hybrid plate specimen Highly efficient and reusable polyacrylonitrile-based nanocomposite sorbents for oil spill removal Shell element-based prediction of process-induced deformation considering the different fabric parameters and stacking sequences of CFRP woven composites Enhanced physical and mechanical properties of Cu-based nanocomposites with bundled multi-layered carbon nanotubes incorporation: fabrication and comparative analysis via conventional sintering and SPS techniques
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1