{"title":"Plackett–Luce modeling with trajectory models for measuring athlete strength","authors":"Katy McKeough, Mark Glickman","doi":"10.1515/jqas-2021-0034","DOIUrl":null,"url":null,"abstract":"Abstract It is often the goal of sports analysts, coaches, and fans to predict athlete performance over time. Models such as Bradley–Terry and Plackett–Luce measure athlete skill based on results of competitions over time, but have limited predictive strength without making assumptions about the nature of the evolution of athletic skill. Growth curves are often applied in the context of sports to predict future ability, but these curves are too simple to account for complex career trajectories. We propose a non-linear, mixed-effects trajectory to model the ratings as a function of time and other athlete-specific covariates. The mixture of trajectories allows for flexibility in the estimated shape of career trajectories between athletes as well as between sports. We use the fitted trajectories to make predictions of an athlete’s career trajectory through a model of how athlete performance progresses over time in a multi-competitor scenario as an extension to the Plackett–Luce model. We show how this model is useful for predicting the outcome of women’s luge races, as well as show how we can use the model to compare athletes to one another by clustering career trajectories.","PeriodicalId":16925,"journal":{"name":"Journal of Quantitative Analysis in Sports","volume":"50 10","pages":"0"},"PeriodicalIF":1.1000,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Quantitative Analysis in Sports","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/jqas-2021-0034","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"SOCIAL SCIENCES, MATHEMATICAL METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract It is often the goal of sports analysts, coaches, and fans to predict athlete performance over time. Models such as Bradley–Terry and Plackett–Luce measure athlete skill based on results of competitions over time, but have limited predictive strength without making assumptions about the nature of the evolution of athletic skill. Growth curves are often applied in the context of sports to predict future ability, but these curves are too simple to account for complex career trajectories. We propose a non-linear, mixed-effects trajectory to model the ratings as a function of time and other athlete-specific covariates. The mixture of trajectories allows for flexibility in the estimated shape of career trajectories between athletes as well as between sports. We use the fitted trajectories to make predictions of an athlete’s career trajectory through a model of how athlete performance progresses over time in a multi-competitor scenario as an extension to the Plackett–Luce model. We show how this model is useful for predicting the outcome of women’s luge races, as well as show how we can use the model to compare athletes to one another by clustering career trajectories.
期刊介绍:
The Journal of Quantitative Analysis in Sports (JQAS), an official journal of the American Statistical Association, publishes timely, high-quality peer-reviewed research on the quantitative aspects of professional and amateur sports, including collegiate and Olympic competition. The scope of application reflects the increasing demand for novel methods to analyze and understand data in the growing field of sports analytics. Articles come from a wide variety of sports and diverse perspectives, and address topics such as game outcome models, measurement and evaluation of player performance, tournament structure, analysis of rules and adjudication, within-game strategy, analysis of sporting technologies, and player and team ranking methods. JQAS seeks to publish manuscripts that demonstrate original ways of approaching problems, develop cutting edge methods, and apply innovative thinking to solve difficult challenges in sports contexts. JQAS brings together researchers from various disciplines, including statistics, operations research, machine learning, scientific computing, econometrics, and sports management.