Satya Krishna Murthy Kanithi, Kalpana Singh, V. Krishna Rao Kandanvli, Haranath Kar
{"title":"Discrete-time state delayed systems with saturation arithmetic: overflow oscillation-free realization","authors":"Satya Krishna Murthy Kanithi, Kalpana Singh, V. Krishna Rao Kandanvli, Haranath Kar","doi":"10.1080/23080477.2023.2264569","DOIUrl":null,"url":null,"abstract":"ABSTRACTIn many smart systems, such as cloud computing, networked control, manufacturing, and telecommunication, the effects of time delays are unavoidable. Saturation nonlinearity is common in many smart systems (e.g. electric systems with limited actuator power supplies, mechanical systems with position and speed constraints, fixed-point digital filters, etc.). Therefore, the study of stability of discrete-time systems (DTSs) with time delay and saturation is of high importance in practice. The global asymptotic stability (GAS) problem of such systems is investigated in this paper. The saturation nonlinearity is constrained by a convex hull with a free matrix whose infinity norm is smaller than or equal to unity. A new Lyapunov-based GAS criterion for DTSs with time-varying delay and state saturation is established. The GAS problem for DTSs with constant delay and saturation is also discussed. The obtained results can be used to ensure the absence of overflow oscillations in the considered system. In comparison to several existing criteria, the approach yields improved stability results. An example is provided to demonstrate the importance of the presented results.KEYWORDS: Asymptotic stabilitydelayed systemdiscrete-time systemstate saturation AcknowledgmentsThe authors would like to thank the Editor-in-Chief and anonymous reviewers for their constructive comments on the manuscript.Disclosure statementNo potential conflict of interest was reported by the author(s).","PeriodicalId":53436,"journal":{"name":"Smart Science","volume":null,"pages":null},"PeriodicalIF":2.4000,"publicationDate":"2023-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Smart Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/23080477.2023.2264569","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
ABSTRACTIn many smart systems, such as cloud computing, networked control, manufacturing, and telecommunication, the effects of time delays are unavoidable. Saturation nonlinearity is common in many smart systems (e.g. electric systems with limited actuator power supplies, mechanical systems with position and speed constraints, fixed-point digital filters, etc.). Therefore, the study of stability of discrete-time systems (DTSs) with time delay and saturation is of high importance in practice. The global asymptotic stability (GAS) problem of such systems is investigated in this paper. The saturation nonlinearity is constrained by a convex hull with a free matrix whose infinity norm is smaller than or equal to unity. A new Lyapunov-based GAS criterion for DTSs with time-varying delay and state saturation is established. The GAS problem for DTSs with constant delay and saturation is also discussed. The obtained results can be used to ensure the absence of overflow oscillations in the considered system. In comparison to several existing criteria, the approach yields improved stability results. An example is provided to demonstrate the importance of the presented results.KEYWORDS: Asymptotic stabilitydelayed systemdiscrete-time systemstate saturation AcknowledgmentsThe authors would like to thank the Editor-in-Chief and anonymous reviewers for their constructive comments on the manuscript.Disclosure statementNo potential conflict of interest was reported by the author(s).
期刊介绍:
Smart Science (ISSN 2308-0477) is an international, peer-reviewed journal that publishes significant original scientific researches, and reviews and analyses of current research and science policy. We welcome submissions of high quality papers from all fields of science and from any source. Articles of an interdisciplinary nature are particularly welcomed. Smart Science aims to be among the top multidisciplinary journals covering a broad spectrum of smart topics in the fields of materials science, chemistry, physics, engineering, medicine, and biology. Smart Science is currently focusing on the topics of Smart Manufacturing (CPS, IoT and AI) for Industry 4.0, Smart Energy and Smart Chemistry and Materials. Other specific research areas covered by the journal include, but are not limited to: 1. Smart Science in the Future 2. Smart Manufacturing: -Cyber-Physical System (CPS) -Internet of Things (IoT) and Internet of Brain (IoB) -Artificial Intelligence -Smart Computing -Smart Design/Machine -Smart Sensing -Smart Information and Networks 3. Smart Energy and Thermal/Fluidic Science 4. Smart Chemistry and Materials