Influence of CUREs on STEM retention depends on demographic identities

IF 1.6 Q2 EDUCATION, SCIENTIFIC DISCIPLINES Journal of Microbiology & Biology Education Pub Date : 2023-10-25 DOI:10.1128/jmbe.00225-22
Lisa Bradshaw, Julianne Vernon, Thomas Schmidt, Timothy James, Jianzhi Zhang, Hilary Archbold, Kenneth Cadigan, John P. Wolfe, Deborah Goldberg
{"title":"Influence of CUREs on STEM retention depends on demographic identities","authors":"Lisa Bradshaw, Julianne Vernon, Thomas Schmidt, Timothy James, Jianzhi Zhang, Hilary Archbold, Kenneth Cadigan, John P. Wolfe, Deborah Goldberg","doi":"10.1128/jmbe.00225-22","DOIUrl":null,"url":null,"abstract":"ABSTRACT Research has shown that undergraduate research experiences can have substantive effects on retaining students in science, technology, engineering and mathematics (STEM). However, it is impossible to provide individual research experiences for every undergraduate student, especially at large universities. Course-based undergraduate research experiences (CUREs) have become a common approach to introduce large numbers of students to research. We investigated whether a one-semester CURE that replaced a traditional introductory biology laboratory course could increase retention in STEM as well as intention to remain in STEM, if the results differed according to demography, and investigated the possible motivational factors that might mediate such an effect. Under the umbrella of the Authentic Research Connection (ARC) program, we used institutional and survey data from nine semesters and compared ARC participants to non-participants, who applied to ARC but either were not randomly selected or were selected but chose not to enroll in an ARC section. We found that ARC had significant effects on demographic groups historically less likely to be retained in STEM: ARC participation resulted in narrowing the gaps in graduation rates in STEM (first vs continuing-generation college students) and in intention to major in STEM [females vs males, Persons Excluded because of Ethnicity or Race (PEERs) vs non-PEERs]. These disproportionate boosts in intending STEM majors among ARC students coincide with their reporting a greater sense of student cohesiveness, retaining more interest in biology, and commenting more frequently that the course provided a useful/valuable learning experience. Our results indicate that CUREs can be a valuable tool for eliminating inequities in STEM participation, and we make several recommendations for further research.","PeriodicalId":46416,"journal":{"name":"Journal of Microbiology & Biology Education","volume":"44 6","pages":"0"},"PeriodicalIF":1.6000,"publicationDate":"2023-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Microbiology & Biology Education","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1128/jmbe.00225-22","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"EDUCATION, SCIENTIFIC DISCIPLINES","Score":null,"Total":0}
引用次数: 0

Abstract

ABSTRACT Research has shown that undergraduate research experiences can have substantive effects on retaining students in science, technology, engineering and mathematics (STEM). However, it is impossible to provide individual research experiences for every undergraduate student, especially at large universities. Course-based undergraduate research experiences (CUREs) have become a common approach to introduce large numbers of students to research. We investigated whether a one-semester CURE that replaced a traditional introductory biology laboratory course could increase retention in STEM as well as intention to remain in STEM, if the results differed according to demography, and investigated the possible motivational factors that might mediate such an effect. Under the umbrella of the Authentic Research Connection (ARC) program, we used institutional and survey data from nine semesters and compared ARC participants to non-participants, who applied to ARC but either were not randomly selected or were selected but chose not to enroll in an ARC section. We found that ARC had significant effects on demographic groups historically less likely to be retained in STEM: ARC participation resulted in narrowing the gaps in graduation rates in STEM (first vs continuing-generation college students) and in intention to major in STEM [females vs males, Persons Excluded because of Ethnicity or Race (PEERs) vs non-PEERs]. These disproportionate boosts in intending STEM majors among ARC students coincide with their reporting a greater sense of student cohesiveness, retaining more interest in biology, and commenting more frequently that the course provided a useful/valuable learning experience. Our results indicate that CUREs can be a valuable tool for eliminating inequities in STEM participation, and we make several recommendations for further research.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
治疗对STEM留任的影响取决于人口统计学特征
研究表明,本科研究经历对留住科学、技术、工程和数学(STEM)专业的学生具有实质性影响。然而,为每个本科生提供个人研究经历是不可能的,尤其是在大型大学。基于课程的本科生研究经验(CUREs)已经成为一种常见的方法来引入大量的学生进行研究。我们调查了一个学期的CURE是否可以取代传统的生物学入门实验课程,如果结果因人口统计学而不同,是否可以增加STEM的保留率和留在STEM的意愿,并调查了可能介导这种影响的可能动机因素。在真实研究联系(ARC)项目的保护下,我们使用了9个学期的机构和调查数据,并将ARC参与者与非参与者进行了比较,这些参与者申请了ARC,但不是随机选择的,或者被选中但选择不参加ARC部分。我们发现,ARC对历史上不太可能留在STEM的人口群体有显著影响:ARC的参与缩小了STEM毕业率(第一代大学生与继续一代大学生)和STEM专业意向(女性vs男性,因种族或种族(同龄人)而被排除的人vs非同龄人)的差距。ARC学生中有意主修STEM专业的人数比例不成比例地增加,与此同时,他们报告的学生凝聚力更强,对生物学更感兴趣,并且更频繁地评论该课程提供了有用/有价值的学习经验。我们的研究结果表明,CUREs可以成为消除STEM参与不平等的有价值的工具,我们提出了一些进一步研究的建议。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Microbiology & Biology Education
Journal of Microbiology & Biology Education EDUCATION, SCIENTIFIC DISCIPLINES-
CiteScore
3.00
自引率
26.30%
发文量
95
审稿时长
22 weeks
期刊最新文献
Applying Beer's Law in the undergraduate cell biology laboratory: examining the mathematical relationship between optical density, cell concentration, and cell size using budding yeast. Development of a simple, low-cost, blue light-emitting diode illuminator for hands-on training of DNA detection experiments using agarose gel electrophoresis. Student reflections on emotional engagement reveal science fatigue during the COVID-19 online learning transition. Visualization of giant Mimivirus in a movie for biology classrooms. Training undergraduate biomedical science majors in peer review and constructive criticism through a senior capstone course.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1