{"title":"Hedging of financial derivative contracts via Monte Carlo tree search","authors":"Oleg Szehr","doi":"10.21314/jcf.2023.009","DOIUrl":null,"url":null,"abstract":"The construction of replication strategies for the pricing and hedging of derivative contracts in incomplete markets is a key problem in financial engineering. We interpret this problem as a “game with the world”, where one player (the investor) bets on what will happen and the other player (the market) decides what will happen. Inspired by the success of the Monte Carlo tree search (MCTS) in a variety of games and stochastic multiperiod planning problems, we introduce this algorithm as a method for replication in the presence of risk and market friction. Unlike model-free reinforcement learning methods (such as Q-learning), MCTS makes explicit use of an environment model. The role of this model is taken by a market simulator, which is frequently adopted even in the training of model-free methods, but its use allows MCTS to plan for the consequences of decisions prior to the execution of actions. We conduct experiments with the AlphaZero variant of MCTS on toy examples of simple market models and derivatives with simple payoff structures. We show that MCTS is capable of maximizing the utility of the investor’s terminal wealth in a setting where no external pricing information is available and rewards are granted only as a result of contractual cashflows. In this setting, we observe that MCTS has superior performance compared with the deep Q-network algorithm and comparable performance to “deep-hedging” methods.","PeriodicalId":51731,"journal":{"name":"Journal of Computational Finance","volume":"18 1","pages":"0"},"PeriodicalIF":0.8000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational Finance","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21314/jcf.2023.009","RegionNum":4,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BUSINESS, FINANCE","Score":null,"Total":0}
引用次数: 3
Abstract
The construction of replication strategies for the pricing and hedging of derivative contracts in incomplete markets is a key problem in financial engineering. We interpret this problem as a “game with the world”, where one player (the investor) bets on what will happen and the other player (the market) decides what will happen. Inspired by the success of the Monte Carlo tree search (MCTS) in a variety of games and stochastic multiperiod planning problems, we introduce this algorithm as a method for replication in the presence of risk and market friction. Unlike model-free reinforcement learning methods (such as Q-learning), MCTS makes explicit use of an environment model. The role of this model is taken by a market simulator, which is frequently adopted even in the training of model-free methods, but its use allows MCTS to plan for the consequences of decisions prior to the execution of actions. We conduct experiments with the AlphaZero variant of MCTS on toy examples of simple market models and derivatives with simple payoff structures. We show that MCTS is capable of maximizing the utility of the investor’s terminal wealth in a setting where no external pricing information is available and rewards are granted only as a result of contractual cashflows. In this setting, we observe that MCTS has superior performance compared with the deep Q-network algorithm and comparable performance to “deep-hedging” methods.
期刊介绍:
The Journal of Computational Finance is an international peer-reviewed journal dedicated to advancing knowledge in the area of financial mathematics. The journal is focused on the measurement, management and analysis of financial risk, and provides detailed insight into numerical and computational techniques in the pricing, hedging and risk management of financial instruments. The journal welcomes papers dealing with innovative computational techniques in the following areas: Numerical solutions of pricing equations: finite differences, finite elements, and spectral techniques in one and multiple dimensions. Simulation approaches in pricing and risk management: advances in Monte Carlo and quasi-Monte Carlo methodologies; new strategies for market factors simulation. Optimization techniques in hedging and risk management. Fundamental numerical analysis relevant to finance: effect of boundary treatments on accuracy; new discretization of time-series analysis. Developments in free-boundary problems in finance: alternative ways and numerical implications in American option pricing.