On the evolution of ectomycorrhizal fungi

IF 10 1区 生物学 Q1 MYCOLOGY Mycosphere Pub Date : 2023-01-01 DOI:10.5943/mycosphere/si/1f/1
M Ryberg, F Kalsoom Khan, M Sánchez-García
{"title":"On the evolution of ectomycorrhizal fungi","authors":"M Ryberg, F Kalsoom Khan, M Sánchez-García","doi":"10.5943/mycosphere/si/1f/1","DOIUrl":null,"url":null,"abstract":"Ectomycorrhiza is a symbiosis between plants and fungi. It is the type of mycorrhiza that involves the highest number of fungal species and it involves many stand forming tree species. As the ectomycorrhizal trees include the majority of all the worlds tree stems, it has a huge impact on the nutrient and carbon cycles. Here, we review the evolution of ectomycorrhiza within fungi. It has evolved many times in different clades. The rate of evolution has not varied much through time, but has varied between clades. Thus, no time period seems to have been more important than others for the evolution of new ectomycorrhizal lineages. It seems like once becoming ectomycorrhizal the probability of becoming saprotrophic again is very low. Despite the large change in nutritional strategy, it does not seem like becoming ectomycorrhizal is a key innovation that by itself gives a high rate of speciation and/or adaptive radiations. Genomic studies have shown little commonality in the evolution of ectomycorrhiza except for the loss of decay genes, expansions of transposable elements, and expansions of Mycorrhiza-induced Small Secreted Proteins. Although this fits with a biotrophic lifestyle and possibly an elevated rate of genome evolution, it does not hint at any other functional similarity. As ectomycorrhizal lineages have evolved many times during the evolutionary history of fungi, and it is not unlikely that there are ectomycorrhizal lineages that have gone extinct, the available functions provided by ectomycorrhiza to plants may have varied over time.","PeriodicalId":48718,"journal":{"name":"Mycosphere","volume":"34 1","pages":"0"},"PeriodicalIF":10.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mycosphere","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5943/mycosphere/si/1f/1","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MYCOLOGY","Score":null,"Total":0}
引用次数: 2

Abstract

Ectomycorrhiza is a symbiosis between plants and fungi. It is the type of mycorrhiza that involves the highest number of fungal species and it involves many stand forming tree species. As the ectomycorrhizal trees include the majority of all the worlds tree stems, it has a huge impact on the nutrient and carbon cycles. Here, we review the evolution of ectomycorrhiza within fungi. It has evolved many times in different clades. The rate of evolution has not varied much through time, but has varied between clades. Thus, no time period seems to have been more important than others for the evolution of new ectomycorrhizal lineages. It seems like once becoming ectomycorrhizal the probability of becoming saprotrophic again is very low. Despite the large change in nutritional strategy, it does not seem like becoming ectomycorrhizal is a key innovation that by itself gives a high rate of speciation and/or adaptive radiations. Genomic studies have shown little commonality in the evolution of ectomycorrhiza except for the loss of decay genes, expansions of transposable elements, and expansions of Mycorrhiza-induced Small Secreted Proteins. Although this fits with a biotrophic lifestyle and possibly an elevated rate of genome evolution, it does not hint at any other functional similarity. As ectomycorrhizal lineages have evolved many times during the evolutionary history of fungi, and it is not unlikely that there are ectomycorrhizal lineages that have gone extinct, the available functions provided by ectomycorrhiza to plants may have varied over time.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
外生菌根真菌的进化
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Mycosphere
Mycosphere MYCOLOGY-
CiteScore
30.00
自引率
8.20%
发文量
9
审稿时长
4 weeks
期刊介绍: Mycosphere stands as an international, peer-reviewed journal committed to the rapid dissemination of high-quality papers on fungal biology. Embracing an open-access approach, Mycosphere serves as a dedicated platform for the mycology community, ensuring swift publication of their valuable contributions. All submitted manuscripts undergo a thorough peer-review process before acceptance, with authors retaining copyright. Key highlights of Mycosphere's publication include: - Peer-reviewed manuscripts and monographs - Open access, fostering accessibility and dissemination of knowledge - Swift turnaround, facilitating timely sharing of research findings - For information regarding open access charges, refer to the instructions for authors - Special volumes, offering a platform for thematic collections and focused contributions. Mycosphere is dedicated to promoting the accessibility and advancement of fungal biology through its inclusive and efficient publishing process.
期刊最新文献
Endophytic fungi in green manure crops; friends or foe? Phylogenomics and diversification of Sordariomycetes An updated taxonomic framework of Hymenochaetales (Agaricomycetes, Basidiomycota) Culturable mycota on bats in central and southern Yunnan Province, China Finding correct names for economically important chanterelles (Cantharellus, Hydnaceae, Cantharellales) in southwestern China: a plea for third party annotation of sequences in GenBank
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1