Methods to improve motion servo control accuracy of pneumatic cylinders - review and prospect

IF 5.3 Q1 ENGINEERING, MECHANICAL International Journal of Hydromechatronics Pub Date : 2023-01-01 DOI:10.1504/ijhm.2023.132301
Pengfei Qian, Lei Liu, Chenwei Pu, Deyuan Meng, Luis Miguel Ruiz Páez
{"title":"Methods to improve motion servo control accuracy of pneumatic cylinders - review and prospect","authors":"Pengfei Qian, Lei Liu, Chenwei Pu, Deyuan Meng, Luis Miguel Ruiz Páez","doi":"10.1504/ijhm.2023.132301","DOIUrl":null,"url":null,"abstract":"Low-cost, non-polluting pneumatic technology is one of the most important engineering technologies. However, the application of pneumatic servo system is limited by the low control accuracy due to the nonlinear factors such as pneumatic actuator friction and compressibility of working medium. Many researchers have been exploring the reasons for this and have taken some targeted measures. Through extensive literature research, this paper summarises these methods into four categories: high-precision friction modelling and compensation, advanced control strategies, improved system stiffness and improved friction characteristics. In addition, the paper offers a new idea that removes the uncertain part of friction that is harmful to the control system and retains the damping part that is beneficial to the control system. For example, it can be considered to introduce a deterministic damping coefficient after removing the friction to enhance the stability of the system, and thus improve the control accuracy of the pneumatic system.","PeriodicalId":29937,"journal":{"name":"International Journal of Hydromechatronics","volume":null,"pages":null},"PeriodicalIF":5.3000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Hydromechatronics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/ijhm.2023.132301","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 2

Abstract

Low-cost, non-polluting pneumatic technology is one of the most important engineering technologies. However, the application of pneumatic servo system is limited by the low control accuracy due to the nonlinear factors such as pneumatic actuator friction and compressibility of working medium. Many researchers have been exploring the reasons for this and have taken some targeted measures. Through extensive literature research, this paper summarises these methods into four categories: high-precision friction modelling and compensation, advanced control strategies, improved system stiffness and improved friction characteristics. In addition, the paper offers a new idea that removes the uncertain part of friction that is harmful to the control system and retains the damping part that is beneficial to the control system. For example, it can be considered to introduce a deterministic damping coefficient after removing the friction to enhance the stability of the system, and thus improve the control accuracy of the pneumatic system.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
提高气缸运动伺服控制精度的方法——综述与展望
低成本、无污染的气动技术是最重要的工程技术之一。然而,由于气动执行器的摩擦和工作介质的可压缩性等非线性因素,控制精度较低,限制了气动伺服系统的应用。许多研究者一直在探索其原因,并采取了一些有针对性的措施。通过大量的文献研究,本文将这些方法归纳为四类:高精度的摩擦建模与补偿、先进的控制策略、改善系统刚度和改善摩擦特性。此外,本文还提出了一种新的思想,即去除对控制系统有害的摩擦不确定部分,保留对控制系统有益的阻尼部分。例如,可以考虑在去除摩擦后引入确定性阻尼系数来增强系统的稳定性,从而提高气动系统的控制精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
7.60
自引率
0.00%
发文量
32
期刊最新文献
A comparative study of energy-efficient clustering protocols for WSN-internet-of-things A mayfly optimisation method to predict load settlement of reinforced railway tracks on soft subgrade with multi-layer geogrid Parameter optimization design of mixing and distributing system of vertical biaxial bladed mixer Research on singular point characteristics and parameter bifurcation of single DOF nonlinear autonomous bearing system of magnetic-liquid double suspension bearing An improved gated convolutional neural network for rolling bearing fault diagnosis with imbalanced data
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1