{"title":"Comparing overlapping data distributions using visualization","authors":"Eric Newburger, Niklas Elmqvist","doi":"10.1177/14738716231173731","DOIUrl":null,"url":null,"abstract":"We present results from a preregistered and crowdsourced user study where we asked members of the general population to determine whether two samples represented using different forms of data visualizations are drawn from the same or different populations. Such a task reduces to assessing whether the overlap between the two visualized samples is large enough to suggest similar or different origins. When using idealized normal curves fitted on the samples, it is essentially a graphical formulation of the classic Student’s t-test. However, we speculate that using more sophisticated visual representations, such as bar histograms, Wilkinson dot plots, strip plots, or Tukey boxplots will both allow people to be more accurate at this task as well as better understand its meaning. In other words, the purpose of our study is to explore which visualization best scaffolds novices in making graphical inferences about data. However, our results indicate that the more abstracted idealized bell curve representation of the task yields more accuracy.","PeriodicalId":50360,"journal":{"name":"Information Visualization","volume":"17 1","pages":"0"},"PeriodicalIF":1.8000,"publicationDate":"2023-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Information Visualization","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/14738716231173731","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 0
Abstract
We present results from a preregistered and crowdsourced user study where we asked members of the general population to determine whether two samples represented using different forms of data visualizations are drawn from the same or different populations. Such a task reduces to assessing whether the overlap between the two visualized samples is large enough to suggest similar or different origins. When using idealized normal curves fitted on the samples, it is essentially a graphical formulation of the classic Student’s t-test. However, we speculate that using more sophisticated visual representations, such as bar histograms, Wilkinson dot plots, strip plots, or Tukey boxplots will both allow people to be more accurate at this task as well as better understand its meaning. In other words, the purpose of our study is to explore which visualization best scaffolds novices in making graphical inferences about data. However, our results indicate that the more abstracted idealized bell curve representation of the task yields more accuracy.
期刊介绍:
Information Visualization is essential reading for researchers and practitioners of information visualization and is of interest to computer scientists and data analysts working on related specialisms. This journal is an international, peer-reviewed journal publishing articles on fundamental research and applications of information visualization. The journal acts as a dedicated forum for the theories, methodologies, techniques and evaluations of information visualization and its applications.
The journal is a core vehicle for developing a generic research agenda for the field by identifying and developing the unique and significant aspects of information visualization. Emphasis is placed on interdisciplinary material and on the close connection between theory and practice.
This journal is a member of the Committee on Publication Ethics (COPE).