Calcium alginate-immobilized β-glucosidase from Moniliophthora perniciosa : characterization and sugarcane bagasse hydrolysis

IF 1.4 4区 生物学 Q4 BIOCHEMISTRY & MOLECULAR BIOLOGY Biocatalysis and Biotransformation Pub Date : 2023-11-10 DOI:10.1080/10242422.2023.2279009
Larissa Emanuelle da Silva Almeida, Sandra Aparecida de Assis
{"title":"Calcium alginate-immobilized β-glucosidase from <i>Moniliophthora perniciosa</i> : characterization and sugarcane bagasse hydrolysis","authors":"Larissa Emanuelle da Silva Almeida, Sandra Aparecida de Assis","doi":"10.1080/10242422.2023.2279009","DOIUrl":null,"url":null,"abstract":"AbstractThe utilization of lignocellulosic materials for second-generation ethanol production via enzymatic catalysts is primarily hindered by enzyme cost. Enzymatic immobilization emerges as a viable solution, enabling enzyme reuse. This study investigated the immobilization of an enzymatic extract obtained from Moniliophthora perniciosa fermentation in calcium alginate spheres using the direct trapping method. Initial tests assessed β-glucosidase activity, showing that a higher concentration of calcium chloride (1 M) alongside larger diameter spheres yielded improved results. The immobilized enzyme was reused for up to 17 cycles without significant loss of activity. The percentage of reducing sugars after 48-h hydrolysis with the supplemented enzymatic extract was 226%, doubling the value achieved with only the free enzymatic extract. The immobilized enzyme retained 50% of its initial activity after 1 h at 80 °C, demonstrating higher activity at pH 6 and 60 °C. These findings suggest that this immobilization technique is simple, economically viable, and effective for the hydrolysis of pretreated sugarcane bagasse.HIGHLIGHTSSuccessful immobilization of M. perniciosa enzymatic extract achieved through direct entrapment in calcium alginate.Immobilized β-glucosidase demonstrates sustained activity over 16 reuse cycles, showcasing the potential for cost-effective bioconversion processes.Enhanced hydrolysis of sugarcane bagasse observed with immobilized enzymatic extract, indicating a promising approach for improved biomass utilization.Keywords: β-Glucosidase immobilizationmoniliophthora perniciosacalcium alginate spheressugarcane bagasse hydrolysisenzymatic bioconversionlignocellulosic ethanolreducing sugars AcknowledgmentsWe thank the Biotechnology Graduate Program of State University of Feira de Santana (UEFS/FIOCRUZ), the Coordenação de Aperfeiçoamento Pessoal de Nível Superior (CAPES) for a doctoral scholarship (88882.447813/2019-01), the Bahia State Research Support Foundation (FAPESB), and the National Council for Scientific and Technological Development (CNPq).Authors’ contributionsAll authors contributed to the study conception and design. Material preparation, data collection, and analysis were performed by Larissa E. S. Almeida and Sandra A. Assis. The first draft of the manuscript was written by Larissa E. S. Almeida, and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.Disclosure statementNo potential conflict of interest was reported by the author(s).Additional informationFundingWe thank the Biotechnology Graduate Program of State University of Feira de Santana (UEFS/FIOCRUZ), the Coordenação de Aperfeiçoamento Pessoal de Nível Superior (CAPES) for a doctoral scholarship (88882.447813/2019-01), the Bahia State Research Support Foundation (FAPESB), and the National Council for Scientific and Technological Development (CNPq).","PeriodicalId":8824,"journal":{"name":"Biocatalysis and Biotransformation","volume":null,"pages":null},"PeriodicalIF":1.4000,"publicationDate":"2023-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biocatalysis and Biotransformation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/10242422.2023.2279009","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

AbstractThe utilization of lignocellulosic materials for second-generation ethanol production via enzymatic catalysts is primarily hindered by enzyme cost. Enzymatic immobilization emerges as a viable solution, enabling enzyme reuse. This study investigated the immobilization of an enzymatic extract obtained from Moniliophthora perniciosa fermentation in calcium alginate spheres using the direct trapping method. Initial tests assessed β-glucosidase activity, showing that a higher concentration of calcium chloride (1 M) alongside larger diameter spheres yielded improved results. The immobilized enzyme was reused for up to 17 cycles without significant loss of activity. The percentage of reducing sugars after 48-h hydrolysis with the supplemented enzymatic extract was 226%, doubling the value achieved with only the free enzymatic extract. The immobilized enzyme retained 50% of its initial activity after 1 h at 80 °C, demonstrating higher activity at pH 6 and 60 °C. These findings suggest that this immobilization technique is simple, economically viable, and effective for the hydrolysis of pretreated sugarcane bagasse.HIGHLIGHTSSuccessful immobilization of M. perniciosa enzymatic extract achieved through direct entrapment in calcium alginate.Immobilized β-glucosidase demonstrates sustained activity over 16 reuse cycles, showcasing the potential for cost-effective bioconversion processes.Enhanced hydrolysis of sugarcane bagasse observed with immobilized enzymatic extract, indicating a promising approach for improved biomass utilization.Keywords: β-Glucosidase immobilizationmoniliophthora perniciosacalcium alginate spheressugarcane bagasse hydrolysisenzymatic bioconversionlignocellulosic ethanolreducing sugars AcknowledgmentsWe thank the Biotechnology Graduate Program of State University of Feira de Santana (UEFS/FIOCRUZ), the Coordenação de Aperfeiçoamento Pessoal de Nível Superior (CAPES) for a doctoral scholarship (88882.447813/2019-01), the Bahia State Research Support Foundation (FAPESB), and the National Council for Scientific and Technological Development (CNPq).Authors’ contributionsAll authors contributed to the study conception and design. Material preparation, data collection, and analysis were performed by Larissa E. S. Almeida and Sandra A. Assis. The first draft of the manuscript was written by Larissa E. S. Almeida, and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.Disclosure statementNo potential conflict of interest was reported by the author(s).Additional informationFundingWe thank the Biotechnology Graduate Program of State University of Feira de Santana (UEFS/FIOCRUZ), the Coordenação de Aperfeiçoamento Pessoal de Nível Superior (CAPES) for a doctoral scholarship (88882.447813/2019-01), the Bahia State Research Support Foundation (FAPESB), and the National Council for Scientific and Technological Development (CNPq).
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
褐霉霉海藻酸钙固定化β-葡萄糖苷酶:表征及蔗渣水解
摘要利用木质纤维素材料通过酶催化生产第二代乙醇主要受到酶成本的阻碍。酶固定化作为一种可行的解决方案出现,使酶能够重复使用。本研究采用直接捕集法,研究了在海藻酸钙球中固定化黑霉菌发酵酶提取物的方法。最初的测试评估了β-葡萄糖苷酶的活性,表明更高浓度的氯化钙(1 M)和更大直径的球产生了更好的结果。固定化酶可重复使用17个循环而没有明显的活性损失。添加酶提取物48小时后,还原糖的百分比为226%,是仅添加游离酶提取物时的两倍。固定酶在80°C条件下1 h后仍保持50%的初始活性,在pH 6和60°C条件下表现出更高的活性。这些结果表明,这种固定化技术简单,经济可行,对预处理甘蔗渣的水解是有效的。通过直接包埋在海藻酸钙中,成功地固定化了perniciosa酶提取物。固定化β-葡萄糖苷酶在16次重复使用循环中表现出持续的活性,显示了具有成本效益的生物转化过程的潜力。固定化酶提取物对蔗渣的水解作用增强,为提高生物质利用率提供了一条有前途的途径。关键词:我们感谢费拉·德·桑塔纳州立大学生物技术研究生项目(UEFS/FIOCRUZ)、 协调委员会(CAPES)为我们提供的博士奖学金(88882.447813/2019-01)、巴伊亚州立研究支持基金会(FAPESB)、巴伊亚州立研究支持基金会(FAPESB)、巴伊亚州立研究支持基金会(FAPESB)。国家科学技术发展委员会。作者的贡献所有作者都对研究的构思和设计做出了贡献。材料准备、数据收集和分析由Larissa E. S. Almeida和Sandra A. Assis完成。手稿的初稿是由Larissa E. S. Almeida撰写的,所有作者都对以前的手稿版本进行了评论。所有作者都阅读并批准了最终的手稿。披露声明作者未报告潜在的利益冲突。我们感谢费拉·德·桑塔纳州立大学生物技术研究生项目(UEFS/FIOCRUZ)、 技术合作与发展协调委员会(CAPES)提供的博士奖学金(88882.447813/2019-01)、巴伊亚州研究支持基金会(FAPESB)和国家科学技术发展委员会(CNPq)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Biocatalysis and Biotransformation
Biocatalysis and Biotransformation 生物-生化与分子生物学
CiteScore
4.40
自引率
5.60%
发文量
37
审稿时长
3 months
期刊介绍: Biocatalysis and Biotransformation publishes high quality research on the application of biological catalysts for the synthesis, interconversion or degradation of chemical species. Papers are published in the areas of: Mechanistic principles Kinetics and thermodynamics of biocatalytic processes Chemical or genetic modification of biocatalysts Developments in biocatalyst''s immobilization Activity and stability of biocatalysts in non-aqueous and multi-phasic environments, including the design of large scale biocatalytic processes Biomimetic systems Environmental applications of biocatalysis Metabolic engineering Types of articles published are; full-length original research articles, reviews, short communications on the application of biotransformations, and preliminary reports of novel catalytic activities.
期刊最新文献
Utilization of laccase magnetic cross-link aggregates for decolorization of amido black 10B contained in water Proteolysis-resistant extracellular uricase from the sponge-derived Streptomyces rochei Characterization of a novel cellobiose phosphorylase with broad optimal pH range from a tailings pond macrogenomic library Production of antioxidant hydrolysates from bovine caseinate and soy protein using three non-commercial bacterial proteases Microbial transformation of argentatins by Cunninghamella elegans
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1