Hardware Implementations of Elliptic Curve Cryptography Using Shift-Sub Based Modular Multiplication Algorithms

IF 1.8 Q3 COMPUTER SCIENCE, INFORMATION SYSTEMS Cryptography Pub Date : 2023-11-10 DOI:10.3390/cryptography7040057
Yamin Li
{"title":"Hardware Implementations of Elliptic Curve Cryptography Using Shift-Sub Based Modular Multiplication Algorithms","authors":"Yamin Li","doi":"10.3390/cryptography7040057","DOIUrl":null,"url":null,"abstract":"Elliptic curve cryptography (ECC) over prime fields relies on scalar point multiplication realized by point addition and point doubling. Point addition and point doubling operations consist of many modular multiplications of large operands (256 bits for example), especially in projective and Jacobian coordinates which eliminate the modular inversion required in affine coordinates for every point addition or point doubling operation. Accelerating modular multiplication is therefore important for high-performance ECC. This paper presents the hardware implementations of modular multiplication algorithms, including (1) interleaved modular multiplication (IMM), (2) Montgomery modular multiplication (MMM), (3) shift-sub modular multiplication (SSMM), (4) SSMM with advance preparation (SSMMPRE), and (5) SSMM with CSAs and sign detection (SSMMCSA) algorithms, and evaluates their execution time (the number of clock cycles and clock frequency) and required hardware resources (ALMs and registers). Experimental results show that SSMM is 1.80 times faster than IMM, and SSMMCSA is 3.27 times faster than IMM. We also present the ECC hardware implementations based on the Secp256k1 protocol in affine, projective, and Jacobian coordinates using the IMM, SSMM, SSMMPRE, and SSMMCSA algorithms, and investigate their cost and performance. Our ECC implementations can be applied to the design of hardware security module systems.","PeriodicalId":36072,"journal":{"name":"Cryptography","volume":" February","pages":"0"},"PeriodicalIF":1.8000,"publicationDate":"2023-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cryptography","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/cryptography7040057","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Elliptic curve cryptography (ECC) over prime fields relies on scalar point multiplication realized by point addition and point doubling. Point addition and point doubling operations consist of many modular multiplications of large operands (256 bits for example), especially in projective and Jacobian coordinates which eliminate the modular inversion required in affine coordinates for every point addition or point doubling operation. Accelerating modular multiplication is therefore important for high-performance ECC. This paper presents the hardware implementations of modular multiplication algorithms, including (1) interleaved modular multiplication (IMM), (2) Montgomery modular multiplication (MMM), (3) shift-sub modular multiplication (SSMM), (4) SSMM with advance preparation (SSMMPRE), and (5) SSMM with CSAs and sign detection (SSMMCSA) algorithms, and evaluates their execution time (the number of clock cycles and clock frequency) and required hardware resources (ALMs and registers). Experimental results show that SSMM is 1.80 times faster than IMM, and SSMMCSA is 3.27 times faster than IMM. We also present the ECC hardware implementations based on the Secp256k1 protocol in affine, projective, and Jacobian coordinates using the IMM, SSMM, SSMMPRE, and SSMMCSA algorithms, and investigate their cost and performance. Our ECC implementations can be applied to the design of hardware security module systems.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于移位子的模乘法算法的椭圆曲线密码的硬件实现
素数域上的椭圆曲线加密依赖于通过点加法和点加倍实现的标量点乘法。点加法和点加倍操作由许多大操作数(例如256位)的模乘法组成,特别是在射影和雅可比坐标中,这消除了仿射坐标中每个点加法或点加倍操作所需的模反转。因此,加速模块化乘法对于高性能ECC非常重要。本文介绍了模块化乘法算法的硬件实现,包括(1)交错模块化乘法(IMM)、(2)Montgomery模块化乘法(MMM)、(3)移位-子模块化乘法(SSMM)、(4)带预准备的SSMM (SSMMPRE)和(5)带csa和符号检测的SSMM (SSMMCSA)算法,并评估了它们的执行时间(时钟周期数和时钟频率)和所需的硬件资源(alm和寄存器)。实验结果表明,SSMM比IMM快1.80倍,SSMMCSA比IMM快3.27倍。我们还介绍了基于Secp256k1协议的仿射、射影和雅可比坐标的ECC硬件实现,使用IMM、SSMM、SSMMPRE和SSMMCSA算法,并研究了它们的成本和性能。我们的ECC实现可以应用于硬件安全模块系统的设计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Cryptography
Cryptography Mathematics-Applied Mathematics
CiteScore
3.80
自引率
6.20%
发文量
53
审稿时长
11 weeks
期刊最新文献
Locking-Enabled Security Analysis of Cryptographic Circuits Residue Number System (RNS) and Power Distribution Network Topology-Based Mitigation of Power Side-Channel Attacks Practical Certificate-Less Infrastructure with Application in TLS A Publicly Verifiable E-Voting System Based on Biometrics Garbled Circuits Reimagined: Logic Synthesis Unleashes Efficient Secure Computation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1