Beyond Fama-French Factors: Alpha from Short-Term Signals

IF 3.4 3区 经济学 Q1 BUSINESS, FINANCE Financial Analysts Journal Pub Date : 2023-04-13 DOI:10.1080/0015198x.2023.2173492
David Blitz, Matthias X. Hanauer, Iman Honarvar, Rob Huisman, Pim van Vliet
{"title":"Beyond Fama-French Factors: Alpha from Short-Term Signals","authors":"David Blitz, Matthias X. Hanauer, Iman Honarvar, Rob Huisman, Pim van Vliet","doi":"10.1080/0015198x.2023.2173492","DOIUrl":null,"url":null,"abstract":"Short-term alpha signals are generally dismissed in traditional asset pricing models, primarily due to market friction concerns. However, this paper demonstrates that investors can obtain a significant net alpha by applying a combination of signals to a liquid global universe and with advanced buy/sell trading rules that mitigate transaction costs. The composite model consists of short-term reversal, short-term momentum, short-term analyst revisions, short-term risk, and monthly seasonality signals. The resulting alpha is present in out-of-sample and post-publication periods and across regions, translates into long-only applications, is robust to incorporating implementation lags of several days, and is uncorrelated to traditional Fama-French factors.","PeriodicalId":48062,"journal":{"name":"Financial Analysts Journal","volume":"3 1","pages":"0"},"PeriodicalIF":3.4000,"publicationDate":"2023-04-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Financial Analysts Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/0015198x.2023.2173492","RegionNum":3,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BUSINESS, FINANCE","Score":null,"Total":0}
引用次数: 4

Abstract

Short-term alpha signals are generally dismissed in traditional asset pricing models, primarily due to market friction concerns. However, this paper demonstrates that investors can obtain a significant net alpha by applying a combination of signals to a liquid global universe and with advanced buy/sell trading rules that mitigate transaction costs. The composite model consists of short-term reversal, short-term momentum, short-term analyst revisions, short-term risk, and monthly seasonality signals. The resulting alpha is present in out-of-sample and post-publication periods and across regions, translates into long-only applications, is robust to incorporating implementation lags of several days, and is uncorrelated to traditional Fama-French factors.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
超越法玛-法伦因素:来自短期信号的阿尔法
在传统的资产定价模型中,短期α信号通常被忽略,主要是由于市场摩擦的担忧。然而,本文证明,投资者可以通过将信号组合应用于流动性的全球宇宙并采用先进的买入/卖出交易规则来降低交易成本,从而获得显著的净α。复合模型由短期反转、短期动量、短期分析师修正、短期风险和月度季节性信号组成。由此产生的alpha存在于样本外和出版后时期以及跨地区,转化为只做多的应用程序,对于包含数天的实施滞后是稳健的,并且与传统的Fama-French因素无关。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Financial Analysts Journal
Financial Analysts Journal BUSINESS, FINANCE-
CiteScore
5.40
自引率
7.10%
发文量
31
期刊介绍: The Financial Analysts Journal aims to be the leading practitioner journal in the investment management community by advancing the knowledge and understanding of the practice of investment management through the publication of rigorous, peer-reviewed, practitioner-relevant research from leading academics and practitioners.
期刊最新文献
Choices Matter When Training Machine Learning Models for Return Prediction The Importance of Joining Lifecycle Models with Mean-Variance Optimization Transaction Costs and Capacity of Systematic Corporate Bond Strategies Predicting Corporate Bond Illiquidity via Machine Learning Nonlinear Factor Returns in the US Equity Market
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1