Chen-Tui Hung, Kai Xuan Lee, Yi-Zheng Liu, Ya-Shu Chen, Zhong-Han Chan
{"title":"Energy-efficient Communications for Improving Timely Progress of Intermittent Powered BLE Devices","authors":"Chen-Tui Hung, Kai Xuan Lee, Yi-Zheng Liu, Ya-Shu Chen, Zhong-Han Chan","doi":"10.1145/3626197","DOIUrl":null,"url":null,"abstract":"Battery-less devices offer potential solutions for maintaining sustainable Internet of Things (IoT) networks. However, limited energy harvesting capacity can lead to power failures, limiting the system’s quality of service (QoS) . To improve timely task progress, we present ETIME, a scheduling framework that enables energy-efficient communication for intermittent-powered IoT devices. To maximize energy efficiency while meeting the timely requirements of intermittent systems, we first model the relationship between insufficient harvesting energy and task behavior time. We then propose a method for predicting response times for battery-less devices. Considering both delays from multiple task interference and insufficient system energy, we introduce a dynamic wake-up strategy to improve timely task progress. Additionally, to minimize power consumption from connection components, we propose a dynamic connection interval adjustment to provide energy-efficient communication. The proposed algorithms are implemented in a lightweight operating system on real devices. Experimental results show that our approach can significantly improve progress for timely applications while maintaining task progress.","PeriodicalId":50914,"journal":{"name":"ACM Transactions on Embedded Computing Systems","volume":" 79","pages":"0"},"PeriodicalIF":2.8000,"publicationDate":"2023-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Embedded Computing Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3626197","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0
Abstract
Battery-less devices offer potential solutions for maintaining sustainable Internet of Things (IoT) networks. However, limited energy harvesting capacity can lead to power failures, limiting the system’s quality of service (QoS) . To improve timely task progress, we present ETIME, a scheduling framework that enables energy-efficient communication for intermittent-powered IoT devices. To maximize energy efficiency while meeting the timely requirements of intermittent systems, we first model the relationship between insufficient harvesting energy and task behavior time. We then propose a method for predicting response times for battery-less devices. Considering both delays from multiple task interference and insufficient system energy, we introduce a dynamic wake-up strategy to improve timely task progress. Additionally, to minimize power consumption from connection components, we propose a dynamic connection interval adjustment to provide energy-efficient communication. The proposed algorithms are implemented in a lightweight operating system on real devices. Experimental results show that our approach can significantly improve progress for timely applications while maintaining task progress.
期刊介绍:
The design of embedded computing systems, both the software and hardware, increasingly relies on sophisticated algorithms, analytical models, and methodologies. ACM Transactions on Embedded Computing Systems (TECS) aims to present the leading work relating to the analysis, design, behavior, and experience with embedded computing systems.