A Semantic Feature Enhancement-Based Aerial Image Target Detection Method Using Dense RFB-FE

IF 4.1 4区 计算机科学 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE International Journal on Semantic Web and Information Systems Pub Date : 2023-09-29 DOI:10.4018/ijswis.331083
Xinyang Li, Jingguo Zhang
{"title":"A Semantic Feature Enhancement-Based Aerial Image Target Detection Method Using Dense RFB-FE","authors":"Xinyang Li, Jingguo Zhang","doi":"10.4018/ijswis.331083","DOIUrl":null,"url":null,"abstract":"Aerial image target detection is a challenging task due to the complex backgrounds, dense target distribution, and large-scale differences often present in aerial images. Existing methods often struggle to effectively extract detailed features and address the issue of imbalanced positive and negative samples. To tackle these challenges, an aerial image target detection method (dense RFB-FE-CGAM) based on dense RFB-FE and channel-global attention mechanism (CGAM) was proposed. First, the authors design a shallow feature enhancement module using dense RFB feature multiplexing and expand convolution within an SSD network, improving detailed feature extraction. Second, they introduce CGAM, a global attention module, to enhance semantic feature extraction in backbone networks. Finally, they incorporate a focal loss function for joint training, addressing sample imbalance. In experiments, the method achieved an mAP of 0.755 on the DOTA dataset and recall/AP values of 0.889/0.906 on HRSC2016, confirming the effectiveness of dense RFB-FE-CGAM for aerial image target detection.","PeriodicalId":54934,"journal":{"name":"International Journal on Semantic Web and Information Systems","volume":"100 1","pages":"0"},"PeriodicalIF":4.1000,"publicationDate":"2023-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal on Semantic Web and Information Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/ijswis.331083","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Aerial image target detection is a challenging task due to the complex backgrounds, dense target distribution, and large-scale differences often present in aerial images. Existing methods often struggle to effectively extract detailed features and address the issue of imbalanced positive and negative samples. To tackle these challenges, an aerial image target detection method (dense RFB-FE-CGAM) based on dense RFB-FE and channel-global attention mechanism (CGAM) was proposed. First, the authors design a shallow feature enhancement module using dense RFB feature multiplexing and expand convolution within an SSD network, improving detailed feature extraction. Second, they introduce CGAM, a global attention module, to enhance semantic feature extraction in backbone networks. Finally, they incorporate a focal loss function for joint training, addressing sample imbalance. In experiments, the method achieved an mAP of 0.755 on the DOTA dataset and recall/AP values of 0.889/0.906 on HRSC2016, confirming the effectiveness of dense RFB-FE-CGAM for aerial image target detection.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于语义特征增强的密集RFB-FE航空图像目标检测方法
由于航空图像背景复杂、目标分布密集、差异大等特点,航空图像目标检测是一项具有挑战性的任务。现有的方法往往难以有效地提取细节特征,并解决正、负样本不平衡的问题。针对这些问题,提出了一种基于密集RFB-FE-CGAM和通道全局注意机制(CGAM)的航空图像目标检测方法(dense RFB-FE-CGAM)。首先,作者设计了一个浅层特征增强模块,使用密集的RFB特征复用,并在SSD网络中扩展卷积,改进了详细的特征提取。其次,他们引入全局关注模块CGAM来增强骨干网的语义特征提取。最后,他们将焦点损失函数纳入联合训练,解决样本不平衡问题。在实验中,该方法在DOTA数据集上的mAP值为0.755,在HRSC2016上的recall/AP值为0.889/0.906,验证了密集RFB-FE-CGAM在航空图像目标检测中的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
6.20
自引率
12.50%
发文量
51
审稿时长
20 months
期刊介绍: The International Journal on Semantic Web and Information Systems (IJSWIS) promotes a knowledge transfer channel where academics, practitioners, and researchers can discuss, analyze, criticize, synthesize, communicate, elaborate, and simplify the more-than-promising technology of the semantic Web in the context of information systems. The journal aims to establish value-adding knowledge transfer and personal development channels in three distinctive areas: academia, industry, and government.
期刊最新文献
A Web Semantic-Based Text Analysis Approach for Enhancing Named Entity Recognition Using PU-Learning and Negative Sampling Blockchain-Based Lightweight Authentication Mechanisms for Industrial Internet of Things and Information Systems A Network Intrusion Detection Method for Information Systems Using Federated Learning and Improved Transformer Semantic Trajectory Planning for Industrial Robotics Digital Copyright Management Mechanism Based on Dynamic Encryption for Multiplatform Browsers
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1