Evaluating 2021 extreme flash flood of Teesta River

IF 2.6 4区 环境科学与生态学 Q2 WATER RESOURCES Hydrology Research Pub Date : 2023-09-29 DOI:10.2166/nh.2023.122
None Shampa, Israt Jahan Nejhum, Md. Manjurul Hussain, Mohammad Muddassir Islam, Rubaid Hassan Zoha
{"title":"Evaluating 2021 extreme flash flood of Teesta River","authors":"None Shampa, Israt Jahan Nejhum, Md. Manjurul Hussain, Mohammad Muddassir Islam, Rubaid Hassan Zoha","doi":"10.2166/nh.2023.122","DOIUrl":null,"url":null,"abstract":"Abstract Due to global warming, extreme hydroclimatic events (e.g., floods) are expected to happen more frequently and last longer. This study investigated such an extreme flood in the transboundary Teesta River that occurred in October 2021. We attempted to quantify the event's impact using data from time series flood levels, precipitation-related satellite images, and two-dimensional hydromorphological modeling. We found it challenging for people to cope with such a hazardous event since the depth of the flooding increased 6.98-fold in just 24 h. Our simulation results indicate that a sand-filled sediment measuring 0.27 m thick covered more than 33% cropland, and the velocity increased by almost 2.5 times. 136,000 individuals were marooned in the water. Compared to previous flooding events in its basin, which occurred in India and Bangladesh, the river appears to have some natural shock absorption features, i.e., a wide braided plain. We propose impact-based forecasting with a proactive early response as a valuable tool for managing such extreme events.","PeriodicalId":13096,"journal":{"name":"Hydrology Research","volume":"15 1","pages":"0"},"PeriodicalIF":2.6000,"publicationDate":"2023-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Hydrology Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2166/nh.2023.122","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"WATER RESOURCES","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract Due to global warming, extreme hydroclimatic events (e.g., floods) are expected to happen more frequently and last longer. This study investigated such an extreme flood in the transboundary Teesta River that occurred in October 2021. We attempted to quantify the event's impact using data from time series flood levels, precipitation-related satellite images, and two-dimensional hydromorphological modeling. We found it challenging for people to cope with such a hazardous event since the depth of the flooding increased 6.98-fold in just 24 h. Our simulation results indicate that a sand-filled sediment measuring 0.27 m thick covered more than 33% cropland, and the velocity increased by almost 2.5 times. 136,000 individuals were marooned in the water. Compared to previous flooding events in its basin, which occurred in India and Bangladesh, the river appears to have some natural shock absorption features, i.e., a wide braided plain. We propose impact-based forecasting with a proactive early response as a valuable tool for managing such extreme events.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
2021年蒂斯塔河极端山洪评估
由于全球变暖,极端水文气候事件(如洪水)的发生频率和持续时间将会增加。本研究调查了2021年10月发生在跨界蒂斯塔河的一次极端洪水。我们试图利用时间序列洪水水位、与降水相关的卫星图像和二维水文形态模型的数据来量化该事件的影响。我们发现人们很难应对这样的危险事件,因为洪水的深度在24小时内增加了6.98倍。我们的模拟结果表明,0.27米厚的沙质沉积物覆盖了33%以上的农田,流速增加了近2.5倍。13.6万人被困在水里。与之前在印度和孟加拉国发生的洪水相比,这条河似乎具有一些天然的减震特征,即宽阔的辫状平原。我们建议基于影响的预测和积极的早期反应作为管理此类极端事件的有价值的工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Hydrology Research
Hydrology Research WATER RESOURCES-
CiteScore
5.00
自引率
7.40%
发文量
0
审稿时长
3.8 months
期刊介绍: Hydrology Research provides international coverage on all aspects of hydrology in its widest sense, and welcomes the submission of papers from across the subject. While emphasis is placed on studies of the hydrological cycle, the Journal also covers the physics and chemistry of water. Hydrology Research is intended to be a link between basic hydrological research and the practical application of scientific results within the broad field of water management.
期刊最新文献
Evaluation of water shortage and instream flows of shared rivers in South Korea according to the dam operations in North Korea Video velocity measurement: A two-stage flow velocity prediction method based on deep learning An approach for flood flow prediction utilizing new hybrids of ANFIS with several optimization techniques: a case study Identification of hydrologically homogenous watersheds and climate-vegetation dynamics in the Blue Nile Basin of Ethiopia Attribution discernment of climate change and human interventions to runoff decline in Huangshui River Basin, China
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1