{"title":"Asymptotic Fermat for signatures (r, r, p) using the modular approach","authors":"Diana Mocanu","doi":"10.1007/s40993-023-00474-6","DOIUrl":null,"url":null,"abstract":"Abstract Let K be a totally real field, and $$r\\ge 5$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:mi>r</mml:mi> <mml:mo>≥</mml:mo> <mml:mn>5</mml:mn> </mml:mrow> </mml:math> a fixed rational prime. In this paper, we use the modular method as presented in the work of Freitas and Siksek to study non-trivial, primitive solutions $$(x,y,z) \\in \\mathcal {O}_K^3$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:mrow> <mml:mo>(</mml:mo> <mml:mi>x</mml:mi> <mml:mo>,</mml:mo> <mml:mi>y</mml:mi> <mml:mo>,</mml:mo> <mml:mi>z</mml:mi> <mml:mo>)</mml:mo> </mml:mrow> <mml:mo>∈</mml:mo> <mml:msubsup> <mml:mi>O</mml:mi> <mml:mi>K</mml:mi> <mml:mn>3</mml:mn> </mml:msubsup> </mml:mrow> </mml:math> of the signature ( r , r , p ) equation $$x^r+y^r=z^p$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:msup> <mml:mi>x</mml:mi> <mml:mi>r</mml:mi> </mml:msup> <mml:mo>+</mml:mo> <mml:msup> <mml:mi>y</mml:mi> <mml:mi>r</mml:mi> </mml:msup> <mml:mo>=</mml:mo> <mml:msup> <mml:mi>z</mml:mi> <mml:mi>p</mml:mi> </mml:msup> </mml:mrow> </mml:math> (where p is a prime that varies). An adaptation of the modular method is needed, and we follow the work of Freitas which constructs Frey curves over totally real subfields of $$K(\\zeta _r)$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:mi>K</mml:mi> <mml:mo>(</mml:mo> <mml:msub> <mml:mi>ζ</mml:mi> <mml:mi>r</mml:mi> </mml:msub> <mml:mo>)</mml:mo> </mml:mrow> </mml:math> . When $$K=\\mathbb {Q}$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:mi>K</mml:mi> <mml:mo>=</mml:mo> <mml:mi>Q</mml:mi> </mml:mrow> </mml:math> we get that for most of the primes $$r<150$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:mi>r</mml:mi> <mml:mo><</mml:mo> <mml:mn>150</mml:mn> </mml:mrow> </mml:math> with $$r \\not \\equiv 1 \\mod 8$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:mi>r</mml:mi> <mml:mo>≢</mml:mo> <mml:mn>1</mml:mn> <mml:mspace /> <mml:mo>mod</mml:mo> <mml:mspace /> <mml:mn>8</mml:mn> </mml:mrow> </mml:math> there are no non-trivial, primitive integer solutions ( x , y , z ) with 2| z for signatures ( r , r , p ) when p is sufficiently large. Similar results hold for quadratic fields, for example when $$K=\\mathbb {Q}(\\sqrt{2})$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:mi>K</mml:mi> <mml:mo>=</mml:mo> <mml:mi>Q</mml:mi> <mml:mo>(</mml:mo> <mml:msqrt> <mml:mn>2</mml:mn> </mml:msqrt> <mml:mo>)</mml:mo> </mml:mrow> </mml:math> there are no non-trivial, primitive solutions $$(x,y,z)\\in \\mathcal {O}_K^3$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:mrow> <mml:mo>(</mml:mo> <mml:mi>x</mml:mi> <mml:mo>,</mml:mo> <mml:mi>y</mml:mi> <mml:mo>,</mml:mo> <mml:mi>z</mml:mi> <mml:mo>)</mml:mo> </mml:mrow> <mml:mo>∈</mml:mo> <mml:msubsup> <mml:mi>O</mml:mi> <mml:mi>K</mml:mi> <mml:mn>3</mml:mn> </mml:msubsup> </mml:mrow> </mml:math> with $$\\sqrt{2}|z$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:msqrt> <mml:mn>2</mml:mn> </mml:msqrt> <mml:mrow> <mml:mo>|</mml:mo> <mml:mi>z</mml:mi> </mml:mrow> </mml:mrow> </mml:math> for signatures (5, 5, p ), (11, 11, p ), (13, 13, p ) and sufficiently large p .","PeriodicalId":43826,"journal":{"name":"Research in Number Theory","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2023-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Research in Number Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s40993-023-00474-6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 3
Abstract
Abstract Let K be a totally real field, and $$r\ge 5$$ r≥5 a fixed rational prime. In this paper, we use the modular method as presented in the work of Freitas and Siksek to study non-trivial, primitive solutions $$(x,y,z) \in \mathcal {O}_K^3$$ (x,y,z)∈OK3 of the signature ( r , r , p ) equation $$x^r+y^r=z^p$$ xr+yr=zp (where p is a prime that varies). An adaptation of the modular method is needed, and we follow the work of Freitas which constructs Frey curves over totally real subfields of $$K(\zeta _r)$$ K(ζr) . When $$K=\mathbb {Q}$$ K=Q we get that for most of the primes $$r<150$$ r<150 with $$r \not \equiv 1 \mod 8$$ r≢1mod8 there are no non-trivial, primitive integer solutions ( x , y , z ) with 2| z for signatures ( r , r , p ) when p is sufficiently large. Similar results hold for quadratic fields, for example when $$K=\mathbb {Q}(\sqrt{2})$$ K=Q(2) there are no non-trivial, primitive solutions $$(x,y,z)\in \mathcal {O}_K^3$$ (x,y,z)∈OK3 with $$\sqrt{2}|z$$ 2|z for signatures (5, 5, p ), (11, 11, p ), (13, 13, p ) and sufficiently large p .
期刊介绍:
Research in Number Theory is an international, peer-reviewed Hybrid Journal covering the scope of the mathematical disciplines of Number Theory and Arithmetic Geometry. The Mission of the Journal is to publish high-quality original articles that make a significant contribution to these research areas. It will also publish shorter research communications (Letters) covering nascent research in some of the burgeoning areas of number theory research. This journal publishes the highest quality papers in all of the traditional areas of number theory research, and it actively seeks to publish seminal papers in the most emerging and interdisciplinary areas here as well. Research in Number Theory also publishes comprehensive reviews.