Influence of Nb 5+ Substitution on the Phase Formation, Microstructure and Electrical Properties of SBNLT Ceramics Synthesized via the Solid-State Combustion Technique
{"title":"Influence of Nb <sup>5+</sup> Substitution on the Phase Formation, Microstructure and Electrical Properties of SBNLT Ceramics Synthesized via the Solid-State Combustion Technique","authors":"Widchaya Somsri, Autpinya Lucha, Pathit Premwichit, Thanya Udeye, Theerachai Bongkarn","doi":"10.1080/10584587.2023.2234565","DOIUrl":null,"url":null,"abstract":"AbstractIn this study, the phase formation, microstructure, and electrical properties of Sr0.3(Bi0.70Na0.67Li0.03)0.5(Ti1-xNbx)O3: SBNLT-Nbx lead-free ceramics synthesized via the solid state combustion technique were examined. SBNLT-Nbx ceramics with various Nb content of x = 0, 0.01, 0.03, and 0.05 were calcined at 750 °C and sintered at 1175 °C for 2 h, respectively. The SBNLT-Nbx calcined powders showed a perovskite structure and a secondary NbO2 phase was observed with Nb5+ content of 0.03 and 0.05 mol%. All SBNLT-Nbx ceramics exhibited a pure perovskite phase with coexisting rhombohedral and tetragonal phases. The grain size was in the range of 1.17-1.34 µm. The εmax and tan δmax tended to decrease with increased x content. The best ferroelectric and energy storage properties (Pmax = 27.45 µC/cm2, Pr = 1.92 µC/cm2 and Wtotal = 0.958 J/cm3, Wrec = 0.739 J/cm3, Wloss = 0.219 J/cm3, η = 77.1%), measured under an electric field of 70 kV/cm, were observed at x = 0.01.Keywords: SBNLTdielectricferroelectricenergy storagecombustion technique Disclosure StatementNo potential conflict of interest was reported by the author(s).Additional informationFundingThis work was supported by Naresuan University (R2566C005). The authors thank the Department of Physics, Faculty of Science, Naresuan University for their supporting facilities and and Prof. Dr. David P. Cann, Oregon State University, for his assistance with polarization-electric field (P-E) hysteresis loop measurements. Thanks are also given to Asst. Prof. Dr. Kyle V. Lopin for his help in editing the manuscript.","PeriodicalId":13686,"journal":{"name":"Integrated Ferroelectrics","volume":"104 1","pages":"0"},"PeriodicalIF":0.7000,"publicationDate":"2023-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Integrated Ferroelectrics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/10584587.2023.2234565","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
AbstractIn this study, the phase formation, microstructure, and electrical properties of Sr0.3(Bi0.70Na0.67Li0.03)0.5(Ti1-xNbx)O3: SBNLT-Nbx lead-free ceramics synthesized via the solid state combustion technique were examined. SBNLT-Nbx ceramics with various Nb content of x = 0, 0.01, 0.03, and 0.05 were calcined at 750 °C and sintered at 1175 °C for 2 h, respectively. The SBNLT-Nbx calcined powders showed a perovskite structure and a secondary NbO2 phase was observed with Nb5+ content of 0.03 and 0.05 mol%. All SBNLT-Nbx ceramics exhibited a pure perovskite phase with coexisting rhombohedral and tetragonal phases. The grain size was in the range of 1.17-1.34 µm. The εmax and tan δmax tended to decrease with increased x content. The best ferroelectric and energy storage properties (Pmax = 27.45 µC/cm2, Pr = 1.92 µC/cm2 and Wtotal = 0.958 J/cm3, Wrec = 0.739 J/cm3, Wloss = 0.219 J/cm3, η = 77.1%), measured under an electric field of 70 kV/cm, were observed at x = 0.01.Keywords: SBNLTdielectricferroelectricenergy storagecombustion technique Disclosure StatementNo potential conflict of interest was reported by the author(s).Additional informationFundingThis work was supported by Naresuan University (R2566C005). The authors thank the Department of Physics, Faculty of Science, Naresuan University for their supporting facilities and and Prof. Dr. David P. Cann, Oregon State University, for his assistance with polarization-electric field (P-E) hysteresis loop measurements. Thanks are also given to Asst. Prof. Dr. Kyle V. Lopin for his help in editing the manuscript.
期刊介绍:
Integrated Ferroelectrics provides an international, interdisciplinary forum for electronic engineers and physicists as well as process and systems engineers, ceramicists, and chemists who are involved in research, design, development, manufacturing and utilization of integrated ferroelectric devices. Such devices unite ferroelectric films and semiconductor integrated circuit chips. The result is a new family of electronic devices, which combine the unique nonvolatile memory, pyroelectric, piezoelectric, photorefractive, radiation-hard, acoustic and/or dielectric properties of ferroelectric materials with the dynamic memory, logic and/or amplification properties and miniaturization and low-cost advantages of semiconductor i.c. technology.