An Improved Approach for Implementing Dynamic Mode Decomposition with Control

IF 1.9 Q2 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS Computation Pub Date : 2023-10-08 DOI:10.3390/computation11100201
Gyurhan Nedzhibov
{"title":"An Improved Approach for Implementing Dynamic Mode Decomposition with Control","authors":"Gyurhan Nedzhibov","doi":"10.3390/computation11100201","DOIUrl":null,"url":null,"abstract":"Dynamic Mode Decomposition with Control is a powerful technique for analyzing and modeling complex dynamical systems under the influence of external control inputs. In this paper, we propose a novel approach to implement this technique that offers computational advantages over the existing method. The proposed scheme uses singular value decomposition of a lower order matrix and requires fewer matrix multiplications when determining corresponding approximation matrices. Moreover, the matrix of dynamic modes also has a simpler structure than the corresponding matrix in the standard approach. To demonstrate the efficacy of the proposed implementation, we applied it to a diverse set of numerical examples. The algorithm’s flexibility is demonstrated in tests: accurate modeling of ecological systems like Lotka-Volterra, successful control of chaotic behavior in the Lorenz system and efficient handling of large-scale stable linear systems. This showcased its versatility and efficacy across different dynamical systems.","PeriodicalId":52148,"journal":{"name":"Computation","volume":"148 1","pages":"0"},"PeriodicalIF":1.9000,"publicationDate":"2023-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/computation11100201","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

Dynamic Mode Decomposition with Control is a powerful technique for analyzing and modeling complex dynamical systems under the influence of external control inputs. In this paper, we propose a novel approach to implement this technique that offers computational advantages over the existing method. The proposed scheme uses singular value decomposition of a lower order matrix and requires fewer matrix multiplications when determining corresponding approximation matrices. Moreover, the matrix of dynamic modes also has a simpler structure than the corresponding matrix in the standard approach. To demonstrate the efficacy of the proposed implementation, we applied it to a diverse set of numerical examples. The algorithm’s flexibility is demonstrated in tests: accurate modeling of ecological systems like Lotka-Volterra, successful control of chaotic behavior in the Lorenz system and efficient handling of large-scale stable linear systems. This showcased its versatility and efficacy across different dynamical systems.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一种改进的带控制的动态模态分解方法
动态模态分解与控制是一种强大的技术,用于分析和建模受外部控制输入影响的复杂动态系统。在本文中,我们提出了一种新的方法来实现这种技术,它提供了比现有方法更大的计算优势。该方案采用低阶矩阵的奇异值分解,在确定相应的近似矩阵时需要较少的矩阵乘法。此外,动态模态矩阵的结构也比标准方法中的相应矩阵更简单。为了证明所提出的实现的有效性,我们将其应用于一组不同的数值示例。该算法的灵活性在测试中得到了证明:对Lotka-Volterra等生态系统的精确建模,对Lorenz系统中的混沌行为的成功控制,以及对大规模稳定线性系统的有效处理。这显示了它在不同动力系统中的多功能性和有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Computation
Computation Mathematics-Applied Mathematics
CiteScore
3.50
自引率
4.50%
发文量
201
审稿时长
8 weeks
期刊介绍: Computation a journal of computational science and engineering. Topics: computational biology, including, but not limited to: bioinformatics mathematical modeling, simulation and prediction of nucleic acid (DNA/RNA) and protein sequences, structure and functions mathematical modeling of pathways and genetic interactions neuroscience computation including neural modeling, brain theory and neural networks computational chemistry, including, but not limited to: new theories and methodology including their applications in molecular dynamics computation of electronic structure density functional theory designing and characterization of materials with computation method computation in engineering, including, but not limited to: new theories, methodology and the application of computational fluid dynamics (CFD) optimisation techniques and/or application of optimisation to multidisciplinary systems system identification and reduced order modelling of engineering systems parallel algorithms and high performance computing in engineering.
期刊最新文献
Analytical and Numerical Investigation of Two-Dimensional Heat Transfer with Periodic Boundary Conditions Enhancement of Machine-Learning-Based Flash Calculations near Criticality Using a Resampling Approach Corporate Bankruptcy Prediction Models: A Comparative Study for the Construction Sector in Greece Analysis of Effectiveness of Combined Surface Treatment Methods for Structural Parts with Holes to Enhance Their Fatigue Life A New Mixed Fractional Derivative with Applications in Computational Biology
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1