{"title":"Residuals and diagnostics for multinomial regression models","authors":"Eric A. E. Gerber, Bruce A. Craig","doi":"10.1002/sam.11645","DOIUrl":null,"url":null,"abstract":"Abstract In this paper, we extend the concept of a randomized quantile residual to multinomial regression models. Customary diagnostics for these models are limited because they involve difficult‐to‐interpret residuals and often focus on the fit of one category versus the rest. Our residuals account for associations between categories by using the squared Mahalanobis distances of the observed log‐odds relative to their fitted sampling distributions. Aside from sampling variation, these residuals are exactly normal when the data come from the fitted model. This motivates our use of the residuals to detect model misspecification and overdispersion, in addition to an overall goodness‐of‐fit Kolmogorov–Smirnov test. We illustrate the use of the residuals and diagnostics in both simulation and real data studies.","PeriodicalId":48684,"journal":{"name":"Statistical Analysis and Data Mining","volume":"20 1","pages":"0"},"PeriodicalIF":2.1000,"publicationDate":"2023-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistical Analysis and Data Mining","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/sam.11645","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract In this paper, we extend the concept of a randomized quantile residual to multinomial regression models. Customary diagnostics for these models are limited because they involve difficult‐to‐interpret residuals and often focus on the fit of one category versus the rest. Our residuals account for associations between categories by using the squared Mahalanobis distances of the observed log‐odds relative to their fitted sampling distributions. Aside from sampling variation, these residuals are exactly normal when the data come from the fitted model. This motivates our use of the residuals to detect model misspecification and overdispersion, in addition to an overall goodness‐of‐fit Kolmogorov–Smirnov test. We illustrate the use of the residuals and diagnostics in both simulation and real data studies.
期刊介绍:
Statistical Analysis and Data Mining addresses the broad area of data analysis, including statistical approaches, machine learning, data mining, and applications. Topics include statistical and computational approaches for analyzing massive and complex datasets, novel statistical and/or machine learning methods and theory, and state-of-the-art applications with high impact. Of special interest are articles that describe innovative analytical techniques, and discuss their application to real problems, in such a way that they are accessible and beneficial to domain experts across science, engineering, and commerce.
The focus of the journal is on papers which satisfy one or more of the following criteria:
Solve data analysis problems associated with massive, complex datasets
Develop innovative statistical approaches, machine learning algorithms, or methods integrating ideas across disciplines, e.g., statistics, computer science, electrical engineering, operation research.
Formulate and solve high-impact real-world problems which challenge existing paradigms via new statistical and/or computational models
Provide survey to prominent research topics.