{"title":"Signatures of the Self-organized Criticality Phenomenon in Precursors of Gamma-Ray Bursts","authors":"Xiu-Juan Li, Yu-Peng Yang","doi":"10.3847/2041-8213/acf12c","DOIUrl":null,"url":null,"abstract":"Abstract Precursors provide important clues to the nature of gamma-ray burst (GRB) central engines and can be used to contain GRB physical processes. In this Letter, we study the self-organized criticality in precursors of long GRBs in the third Swift/Burst Alert Telescope catalog. We investigate the differential and cumulative size distributions of 100 precursors, including peak flux, duration, rise time, decay time, and quiescent time with the Markov Chain Monte Carlo technique. It is found that all of the distributions can be well described by power-law models and understood within the physical framework of a self-organized criticality system. In addition, we inspect the cumulative distribution functions of the size differences with a q -Gaussian function. The scale-invariance structures of precursors further strengthen our findings. Particularly, similar analyses are made in 127 main bursts. The results show that both precursors and main bursts can be attributed to a self-organized criticality system with the spatial dimension S = 3 and driven by a similar magnetically dominated process.","PeriodicalId":55567,"journal":{"name":"Astrophysical Journal Letters","volume":"47 1","pages":"0"},"PeriodicalIF":8.8000,"publicationDate":"2023-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Astrophysical Journal Letters","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3847/2041-8213/acf12c","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract Precursors provide important clues to the nature of gamma-ray burst (GRB) central engines and can be used to contain GRB physical processes. In this Letter, we study the self-organized criticality in precursors of long GRBs in the third Swift/Burst Alert Telescope catalog. We investigate the differential and cumulative size distributions of 100 precursors, including peak flux, duration, rise time, decay time, and quiescent time with the Markov Chain Monte Carlo technique. It is found that all of the distributions can be well described by power-law models and understood within the physical framework of a self-organized criticality system. In addition, we inspect the cumulative distribution functions of the size differences with a q -Gaussian function. The scale-invariance structures of precursors further strengthen our findings. Particularly, similar analyses are made in 127 main bursts. The results show that both precursors and main bursts can be attributed to a self-organized criticality system with the spatial dimension S = 3 and driven by a similar magnetically dominated process.
期刊介绍:
The Astrophysical Journal Letters (ApJL) is widely regarded as the foremost journal for swiftly disseminating groundbreaking astronomical research. It focuses on concise reports that highlight pivotal advancements in the field of astrophysics. By prioritizing timeliness and the generation of immediate interest among researchers, ApJL showcases articles featuring novel discoveries and critical findings that have a profound effect on the scientific community. Moreover, ApJL ensures that published articles are comprehensive in their scope, presenting context that can be readily comprehensible to scientists who may not possess expertise in the specific disciplines covered.