On strongly dependent zero-inflated INAR(1) processes

IF 1.2 3区 数学 Q2 STATISTICS & PROBABILITY Statistical Papers Pub Date : 2023-09-29 DOI:10.1007/s00362-023-01496-z
Jan Beran, Frieder Droullier
{"title":"On strongly dependent zero-inflated INAR(1) processes","authors":"Jan Beran, Frieder Droullier","doi":"10.1007/s00362-023-01496-z","DOIUrl":null,"url":null,"abstract":"Abstract We consider INAR(1) processes modulated by an unobserved strongly dependent $$0-1$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:mn>0</mml:mn> <mml:mo>-</mml:mo> <mml:mn>1</mml:mn> </mml:mrow> </mml:math> process. The observed process exhibits zero inflation and long memory. A simple method is proposed for estimating the INAR-parameters without modelling the unobserved modulating process. Asymptotic results for the estimators are derived, and a zero-inflation test is introduced. Asymptotic rejection regions and asymptotic power under long-memory alternatives are derived. A small simulation study illustrates the asymptotic results.","PeriodicalId":51166,"journal":{"name":"Statistical Papers","volume":"94 1","pages":"0"},"PeriodicalIF":1.2000,"publicationDate":"2023-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistical Papers","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s00362-023-01496-z","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract We consider INAR(1) processes modulated by an unobserved strongly dependent $$0-1$$ 0 - 1 process. The observed process exhibits zero inflation and long memory. A simple method is proposed for estimating the INAR-parameters without modelling the unobserved modulating process. Asymptotic results for the estimators are derived, and a zero-inflation test is introduced. Asymptotic rejection regions and asymptotic power under long-memory alternatives are derived. A small simulation study illustrates the asymptotic results.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
关于强相关零膨胀的INAR(1)过程
我们考虑由一个未观察到的强依赖$$0-1$$ 0 - 1过程调制的INAR(1)过程。观察到的过程表现出零膨胀和长记忆。提出了一种无需对未观测到的调制过程进行建模即可估计inar参数的简单方法。给出了估计量的渐近结果,并引入了零膨胀检验。导出了长记忆备选方案下的渐近抑制区域和渐近幂。一个小型的模拟研究说明了渐近的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Statistical Papers
Statistical Papers 数学-统计学与概率论
CiteScore
2.80
自引率
7.70%
发文量
95
审稿时长
6-12 weeks
期刊介绍: The journal Statistical Papers addresses itself to all persons and organizations that have to deal with statistical methods in their own field of work. It attempts to provide a forum for the presentation and critical assessment of statistical methods, in particular for the discussion of their methodological foundations as well as their potential applications. Methods that have broad applications will be preferred. However, special attention is given to those statistical methods which are relevant to the economic and social sciences. In addition to original research papers, readers will find survey articles, short notes, reports on statistical software, problem section, and book reviews.
期刊最新文献
The distribution of power-related random variables (and their use in clinical trials) The cost of sequential adaptation and the lower bound for mean squared error Nested strong orthogonal arrays Tests for time-varying coefficient spatial autoregressive panel data model with fixed effects On the consistency of supervised learning with missing values
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1