An advanced ensemble modeling approach for predicting carbonate reservoir porosity from seismic attributes

Pub Date : 2023-09-06 DOI:10.7494/geol.2023.49.3.245
Tomasz Topór, Krzysztof Sowiżdżał
{"title":"An advanced ensemble modeling approach for predicting carbonate reservoir porosity from seismic attributes","authors":"Tomasz Topór, Krzysztof Sowiżdżał","doi":"10.7494/geol.2023.49.3.245","DOIUrl":null,"url":null,"abstract":"This study uses a machine learning (ML) ensemble modeling approach to predict porosity from multiple seismic attributes in one of the most promising Main Dolomite hydrocarbon reservoirs in NW Poland. The presented workflow tests five different model types of varying complexity: K-nearest neighbors (KNN), random forests (RF), extreme gradient boosting (XGB), support vector machine (SVM), single layer neural network with multilayer perceptron (MLP). The selected models are additionally run with different configurations originating from the pre-processing stage, including Yeo–Johnson transformation (YJ) and principal component analysis (PCA). The race ANOVA method across resample data is used to tune the best hyperparameters for each model. The model candidates and the role of different pre-processors are evaluated based on standard ML metrics – coefficient of determination (R2), root mean squared error (RMSE), and mean absolute error (MAE). The model stacking is performed on five model candidates: two KNN, two XGB, and one SVM PCA with a marginal role. The results of the ensemble model showed superior accuracy over single learners, with all metrics (R2 0.890, RMSE 0.0252, MAE 0.168). It also turned out to be almost three times better than the neural net (NN) results obtained from commercial software on the same testing set (R2 0.318, RMSE 0.0628, MAE 0.0487). The spatial distribution of porosity from the ensemble model indicated areas of good reservoir properties that overlap with hydrocarbon production fields. This observation completes the evaluation of the ensemble technique results from model metrics. Overall, the proposed solution is a promising tool for better porosity prediction and understanding of heterogeneous carbonate reservoirs from multiple seismic attributes.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7494/geol.2023.49.3.245","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This study uses a machine learning (ML) ensemble modeling approach to predict porosity from multiple seismic attributes in one of the most promising Main Dolomite hydrocarbon reservoirs in NW Poland. The presented workflow tests five different model types of varying complexity: K-nearest neighbors (KNN), random forests (RF), extreme gradient boosting (XGB), support vector machine (SVM), single layer neural network with multilayer perceptron (MLP). The selected models are additionally run with different configurations originating from the pre-processing stage, including Yeo–Johnson transformation (YJ) and principal component analysis (PCA). The race ANOVA method across resample data is used to tune the best hyperparameters for each model. The model candidates and the role of different pre-processors are evaluated based on standard ML metrics – coefficient of determination (R2), root mean squared error (RMSE), and mean absolute error (MAE). The model stacking is performed on five model candidates: two KNN, two XGB, and one SVM PCA with a marginal role. The results of the ensemble model showed superior accuracy over single learners, with all metrics (R2 0.890, RMSE 0.0252, MAE 0.168). It also turned out to be almost three times better than the neural net (NN) results obtained from commercial software on the same testing set (R2 0.318, RMSE 0.0628, MAE 0.0487). The spatial distribution of porosity from the ensemble model indicated areas of good reservoir properties that overlap with hydrocarbon production fields. This observation completes the evaluation of the ensemble technique results from model metrics. Overall, the proposed solution is a promising tool for better porosity prediction and understanding of heterogeneous carbonate reservoirs from multiple seismic attributes.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
基于地震属性预测碳酸盐岩储层孔隙度的综合建模方法
该研究使用机器学习(ML)集合建模方法,从波兰西北部最有前途的主要白云岩油气藏之一的多个地震属性预测孔隙度。该工作流测试了五种不同复杂度的模型类型:k近邻(KNN)、随机森林(RF)、极端梯度增强(XGB)、支持向量机(SVM)、单层神经网络与多层感知器(MLP)。此外,所选模型在预处理阶段的不同配置下运行,包括杨-约翰逊变换(YJ)和主成分分析(PCA)。使用跨样本数据的竞争方差分析方法来调整每个模型的最佳超参数。模型候选者和不同预处理器的作用基于标准ML指标-决定系数(R2),均方根误差(RMSE)和平均绝对误差(MAE)进行评估。在五个候选模型上进行模型叠加:两个KNN,两个XGB和一个具有边际作用的SVM PCA。集成模型的结果显示优于单个学习器,所有指标(R2 0.890, RMSE 0.0252, MAE 0.168)。结果也证明,在相同的测试集上,它比从商业软件获得的神经网络(NN)结果好近三倍(R2 0.318, RMSE 0.0628, MAE 0.0487)。综上模型孔隙度的空间分布表明储层物性较好的区域与油气生产油田重叠。这一观察完成了对模型度量的集成技术结果的评估。总的来说,该解决方案是一种很有前途的工具,可以更好地预测孔隙度,并从多个地震属性中了解非均质碳酸盐岩储层。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1