Hybrid neural-network FEM approximation of diffusion coefficient in elliptic and parabolic Problems

IF 2.3 2区 数学 Q1 MATHEMATICS, APPLIED IMA Journal of Numerical Analysis Pub Date : 2023-09-18 DOI:10.1093/imanum/drad073
Siyu Cen, Bangti Jin, Qimeng Quan, Zhi Zhou
{"title":"Hybrid neural-network FEM approximation of diffusion coefficient in elliptic and parabolic Problems","authors":"Siyu Cen, Bangti Jin, Qimeng Quan, Zhi Zhou","doi":"10.1093/imanum/drad073","DOIUrl":null,"url":null,"abstract":"Abstract In this work we investigate the numerical identification of the diffusion coefficient in elliptic and parabolic problems using neural networks (NNs). The numerical scheme is based on the standard output least-squares formulation where the Galerkin finite element method (FEM) is employed to approximate the state and NNs act as a smoothness prior to approximate the unknown diffusion coefficient. A projection operation is applied to the NN approximation in order to preserve the physical box constraint on the unknown coefficient. The hybrid approach enjoys both rigorous mathematical foundation of the FEM and inductive bias/approximation properties of NNs. We derive a priori error estimates in the standard $L^2(\\varOmega )$ norm for the numerical reconstruction, under a positivity condition which can be verified for a large class of problem data. The error bounds depend explicitly on the noise level, regularization parameter and discretization parameters (e.g., spatial mesh size, time step size and depth, upper bound and number of nonzero parameters of NNs). We also provide extensive numerical experiments, indicating that the hybrid method is very robust for large noise when compared with the pure FEM approximation.","PeriodicalId":56295,"journal":{"name":"IMA Journal of Numerical Analysis","volume":"19 1","pages":"0"},"PeriodicalIF":2.3000,"publicationDate":"2023-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IMA Journal of Numerical Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/imanum/drad073","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract In this work we investigate the numerical identification of the diffusion coefficient in elliptic and parabolic problems using neural networks (NNs). The numerical scheme is based on the standard output least-squares formulation where the Galerkin finite element method (FEM) is employed to approximate the state and NNs act as a smoothness prior to approximate the unknown diffusion coefficient. A projection operation is applied to the NN approximation in order to preserve the physical box constraint on the unknown coefficient. The hybrid approach enjoys both rigorous mathematical foundation of the FEM and inductive bias/approximation properties of NNs. We derive a priori error estimates in the standard $L^2(\varOmega )$ norm for the numerical reconstruction, under a positivity condition which can be verified for a large class of problem data. The error bounds depend explicitly on the noise level, regularization parameter and discretization parameters (e.g., spatial mesh size, time step size and depth, upper bound and number of nonzero parameters of NNs). We also provide extensive numerical experiments, indicating that the hybrid method is very robust for large noise when compared with the pure FEM approximation.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
椭圆型和抛物型问题扩散系数的混合神经网络有限元逼近
摘要本文研究了椭圆型和抛物型问题中扩散系数的神经网络辨识方法。数值格式基于标准输出最小二乘公式,其中Galerkin有限元法(FEM)用于近似状态,神经网络作为平滑,在近似未知扩散系数之前。投影运算应用于神经网络近似,以保持未知系数的物理盒约束。该混合方法既具有有限元法的严格数学基础,又具有神经网络的归纳偏置/近似特性。我们在一个正性条件下,在标准的$L^2(\varOmega)$范数中导出了数值重构的先验误差估计,该估计可用于大型问题数据的验证。误差界限明确地取决于噪声水平、正则化参数和离散化参数(例如,空间网格大小、时间步长和深度、神经网络的上限和非零参数的数量)。我们还提供了大量的数值实验,表明与纯有限元近似相比,混合方法对大噪声具有很强的鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
IMA Journal of Numerical Analysis
IMA Journal of Numerical Analysis 数学-应用数学
CiteScore
5.30
自引率
4.80%
发文量
79
审稿时长
6-12 weeks
期刊介绍: The IMA Journal of Numerical Analysis (IMAJNA) publishes original contributions to all fields of numerical analysis; articles will be accepted which treat the theory, development or use of practical algorithms and interactions between these aspects. Occasional survey articles are also published.
期刊最新文献
A fast algorithm for smooth convex minimization problems and its application to inverse source problems Polynomial quasi-Trefftz DG for PDEs with smooth coefficients: elliptic problems Optimal error analysis of the normalized tangent plane FEM for Landau–Lifshitz–Gilbert equation Discontinuous Galerkin discretization of coupled poroelasticity–elasticity problems Convergence and quasi-optimality of an AFEM for the Dirichlet boundary control problem
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1