Polynomial approximation of symmetric functions

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS ACS Applied Bio Materials Pub Date : 2023-06-28 DOI:10.1090/mcom/3868
Markus Bachmayr, Geneviève Dusson, Christoph Ortner
{"title":"Polynomial approximation of symmetric functions","authors":"Markus Bachmayr, Geneviève Dusson, Christoph Ortner","doi":"10.1090/mcom/3868","DOIUrl":null,"url":null,"abstract":"We study the polynomial approximation of symmetric multivariate functions and of multi-set functions. Specifically, we consider <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"f left-parenthesis x 1 comma ellipsis comma x Subscript upper N Baseline right-parenthesis\"> <mml:semantics> <mml:mrow> <mml:mi>f</mml:mi> <mml:mo stretchy=\"false\">(</mml:mo> <mml:msub> <mml:mi>x</mml:mi> <mml:mn>1</mml:mn> </mml:msub> <mml:mo>,</mml:mo> <mml:mo>…<!-- … --></mml:mo> <mml:mo>,</mml:mo> <mml:msub> <mml:mi>x</mml:mi> <mml:mi>N</mml:mi> </mml:msub> <mml:mo stretchy=\"false\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">f(x_1, \\dots , x_N)</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, where <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"x Subscript i Baseline element-of double-struck upper R Superscript d\"> <mml:semantics> <mml:mrow> <mml:msub> <mml:mi>x</mml:mi> <mml:mi>i</mml:mi> </mml:msub> <mml:mo>∈<!-- ∈ --></mml:mo> <mml:msup> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mi mathvariant=\"double-struck\">R</mml:mi> </mml:mrow> <mml:mi>d</mml:mi> </mml:msup> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">x_i \\in \\mathbb {R}^d</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, and <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"f\"> <mml:semantics> <mml:mi>f</mml:mi> <mml:annotation encoding=\"application/x-tex\">f</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is invariant under permutations of its <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper N\"> <mml:semantics> <mml:mi>N</mml:mi> <mml:annotation encoding=\"application/x-tex\">N</mml:annotation> </mml:semantics> </mml:math> </inline-formula> arguments. We demonstrate how these symmetries can be exploited to improve the cost versus error ratio in a polynomial approximation of the function <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"f\"> <mml:semantics> <mml:mi>f</mml:mi> <mml:annotation encoding=\"application/x-tex\">f</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, and in particular study the dependence of that ratio on <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"d comma upper N\"> <mml:semantics> <mml:mrow> <mml:mi>d</mml:mi> <mml:mo>,</mml:mo> <mml:mi>N</mml:mi> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">d, N</mml:annotation> </mml:semantics> </mml:math> </inline-formula> and the polynomial degree. These results are then used to construct approximations and prove approximation rates for functions defined on multi-sets where <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper N\"> <mml:semantics> <mml:mi>N</mml:mi> <mml:annotation encoding=\"application/x-tex\">N</mml:annotation> </mml:semantics> </mml:math> </inline-formula> becomes a parameter of the input.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2023-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1090/mcom/3868","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

We study the polynomial approximation of symmetric multivariate functions and of multi-set functions. Specifically, we consider f ( x 1 , , x N ) f(x_1, \dots , x_N) , where x i R d x_i \in \mathbb {R}^d , and f f is invariant under permutations of its N N arguments. We demonstrate how these symmetries can be exploited to improve the cost versus error ratio in a polynomial approximation of the function f f , and in particular study the dependence of that ratio on d , N d, N and the polynomial degree. These results are then used to construct approximations and prove approximation rates for functions defined on multi-sets where N N becomes a parameter of the input.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
对称函数的多项式近似
研究了对称多元函数和多集函数的多项式逼近问题。具体地说,我们考虑f(x 1,…,x N) f(x_1, \dots, x_N),其中x i∈R d x_i \in \mathbb {R}^d, f f在其N N个参数的置换下是不变的。我们演示了如何利用这些对称性来提高函数f的多项式近似中的成本与错误率,并特别研究了该比率对d, N, N和多项式度的依赖。然后,这些结果用于构造近似并证明在多集上定义的函数的近似率,其中N N成为输入的参数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
期刊最新文献
A Systematic Review of Sleep Disturbance in Idiopathic Intracranial Hypertension. Advancing Patient Education in Idiopathic Intracranial Hypertension: The Promise of Large Language Models. Anti-Myelin-Associated Glycoprotein Neuropathy: Recent Developments. Approach to Managing the Initial Presentation of Multiple Sclerosis: A Worldwide Practice Survey. Association Between LACE+ Index Risk Category and 90-Day Mortality After Stroke.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1