{"title":"Tessellation-valued processes that are generated by cell division","authors":"Servet Martínez, Werner Nagel","doi":"10.1017/jpr.2023.66","DOIUrl":null,"url":null,"abstract":"Abstract Processes of random tessellations of the Euclidean space $\\mathbb{R}^d$ , $d\\geq 1$ , are considered that are generated by subsequent division of their cells. Such processes are characterized by the laws of the life times of the cells until their division and by the laws for the random hyperplanes that divide the cells at the end of their life times. The STIT (STable with respect to ITerations) tessellation processes are a reference model. In the present paper a generalization concerning the life time distributions is introduced, a sufficient condition for the existence of such cell division tessellation processes is provided, and a construction is described. In particular, for the case that the random dividing hyperplanes have a Mondrian distribution—which means that all cells of the tessellations are cuboids—it is shown that the intrinsic volumes, except the Euler characteristic, can be used as the parameter for the exponential life time distribution of the cells.","PeriodicalId":50256,"journal":{"name":"Journal of Applied Probability","volume":"10 4","pages":"0"},"PeriodicalIF":0.7000,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Probability","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1017/jpr.2023.66","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 2
Abstract
Abstract Processes of random tessellations of the Euclidean space $\mathbb{R}^d$ , $d\geq 1$ , are considered that are generated by subsequent division of their cells. Such processes are characterized by the laws of the life times of the cells until their division and by the laws for the random hyperplanes that divide the cells at the end of their life times. The STIT (STable with respect to ITerations) tessellation processes are a reference model. In the present paper a generalization concerning the life time distributions is introduced, a sufficient condition for the existence of such cell division tessellation processes is provided, and a construction is described. In particular, for the case that the random dividing hyperplanes have a Mondrian distribution—which means that all cells of the tessellations are cuboids—it is shown that the intrinsic volumes, except the Euler characteristic, can be used as the parameter for the exponential life time distribution of the cells.
期刊介绍:
Journal of Applied Probability is the oldest journal devoted to the publication of research in the field of applied probability. It is an international journal published by the Applied Probability Trust, and it serves as a companion publication to the Advances in Applied Probability. Its wide audience includes leading researchers across the entire spectrum of applied probability, including biosciences applications, operations research, telecommunications, computer science, engineering, epidemiology, financial mathematics, the physical and social sciences, and any field where stochastic modeling is used.
A submission to Applied Probability represents a submission that may, at the Editor-in-Chief’s discretion, appear in either the Journal of Applied Probability or the Advances in Applied Probability. Typically, shorter papers appear in the Journal, with longer contributions appearing in the Advances.