{"title":"Research on Traffic Flow Forecasting Based on Dynamic Spatial-Temporal Transformer","authors":"Hong Zhang, Hongyan Wang, Xijun Zhang, Lei Gong","doi":"10.1177/03611981231205880","DOIUrl":null,"url":null,"abstract":"Accurate traffic flow forecasting is crucial for urban traffic control and route planning. Aiming at the difficulty in capturing dynamic spatio-temporal complexity of traffic flow, a dynamic spatio-temporal transformer (DST-Trans) model capable of modeling dynamic correlation of traffic flow is proposed, which consists of gated temporal convolutional network (GTCN), graph convolutional network (GCN), and spatio-temporal transformer (ST-TF). GTCN and GCN are utilized to capture the temporal and spatial characteristics of traffic flow, respectively. ST-TF includes a temporal transformer using temporal gated convolution and temporal multi-head self-attention to capture short-long term temporal features, and spatial transformer using spatial gated graph convolution and spatial multi-head self-attention to capture local-global dynamic spatial features. In addition, to take full advantage of the dynamic and static associations of road networks, multi-graph models of road relationship graph, similarity graph, and adaptive dynamic graph with SGGC are constructed. Experimental results show that the DST-Trans model in this paper shows good prediction performance in short-term (15 min), medium-term (30 min), and long-term (60 min) prediction, outperforming existing state-of-the-art models by up to approximately 7%.","PeriodicalId":23279,"journal":{"name":"Transportation Research Record","volume":" 7","pages":"0"},"PeriodicalIF":1.6000,"publicationDate":"2023-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transportation Research Record","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/03611981231205880","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0
Abstract
Accurate traffic flow forecasting is crucial for urban traffic control and route planning. Aiming at the difficulty in capturing dynamic spatio-temporal complexity of traffic flow, a dynamic spatio-temporal transformer (DST-Trans) model capable of modeling dynamic correlation of traffic flow is proposed, which consists of gated temporal convolutional network (GTCN), graph convolutional network (GCN), and spatio-temporal transformer (ST-TF). GTCN and GCN are utilized to capture the temporal and spatial characteristics of traffic flow, respectively. ST-TF includes a temporal transformer using temporal gated convolution and temporal multi-head self-attention to capture short-long term temporal features, and spatial transformer using spatial gated graph convolution and spatial multi-head self-attention to capture local-global dynamic spatial features. In addition, to take full advantage of the dynamic and static associations of road networks, multi-graph models of road relationship graph, similarity graph, and adaptive dynamic graph with SGGC are constructed. Experimental results show that the DST-Trans model in this paper shows good prediction performance in short-term (15 min), medium-term (30 min), and long-term (60 min) prediction, outperforming existing state-of-the-art models by up to approximately 7%.
期刊介绍:
Transportation Research Record: Journal of the Transportation Research Board is one of the most cited and prolific transportation journals in the world, offering unparalleled depth and breadth in the coverage of transportation-related topics. The TRR publishes approximately 70 issues annually of outstanding, peer-reviewed papers presenting research findings in policy, planning, administration, economics and financing, operations, construction, design, maintenance, safety, and more, for all modes of transportation. This site provides electronic access to a full compilation of papers since the 1996 series.