Luoxia Cao, Hong Yang, Yang Zhou, Mingfeng Tang, Shengnan Wang, Huarong Li, Yong Han
{"title":"A robust tension-compression asymmetric phase-field fracture model for describing PBX cracking under complex stress states","authors":"Luoxia Cao, Hong Yang, Yang Zhou, Mingfeng Tang, Shengnan Wang, Huarong Li, Yong Han","doi":"10.1080/07370652.2023.2275199","DOIUrl":null,"url":null,"abstract":"ABSTRACTThe crack behaviors under complex stress states are very important for the safety of polymer-bonded explosives (PBXs) under accidental stimulations, but their accurate description is a challenge. Due to the advances of tracking discontinuities and multi-fields coupling, the phase-field model for complex fracture phenomena is attracting significant interest recently. Conventional phase-field fracture models are tension-compression symmetric or based on volumetric-deviatoric strain energy split, and these conventional phase-field models may lead to unrealistic fracture patterns, which hinders its further application in PBX fracture simulations. In this work, we present an extended, tension-compression asymmetric phase-field fracture model for PBXs, which distinguishes the contributions of tensile and compressive stresses to damage driving energy, and couples the mechanism of mechanical degradation and energy-driving cracking diffusion. We implemented our improved phase-field fracture model into finite element calculations and compared the simulation results with the conventional tension-compression symmetric phase-field fracture model and volumetric-deviatoric strain energy split phase-field fracture model by simulating PBX specimens under static loadings. The results show that our model not only accurately depicts the tensile and compressive cracks, but also describes compression-assisted cracking while suppressing unrealistic damage nucleation caused by small amplitudes of local compressive stresses, making it a very efficient way of describing PBX cracking under complex stress states. This new model is both mathematically and physically concise, and convenient for numerical implementation. Moreover, the novel model can be naturally extended to simulate shock-induced dynamic and/or coupled fracture of PBXs because of its feasibilities for dynamic extension and multi-field coupling.KEYWORDS: Finite element methodphase-field fracturepolymer-bonded explosivesstrain energy decompositiontension-compression asymmetry AcknowledgmentsThe corresponding author acknowledges the financial support from National Natural Science Foundation of China (Grant No. 12202415).Disclosure statementNo potential conflict of interest was reported by the author(s).Supplementary materialSupplemental data for this article can be accessed online at https://doi.org/10.1080/07370652.2023.2275199Additional informationFundingThis work was supported by the National Natural Science Foundation of China [12202415].","PeriodicalId":15754,"journal":{"name":"Journal of Energetic Materials","volume":" 11","pages":"0"},"PeriodicalIF":1.7000,"publicationDate":"2023-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Energetic Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/07370652.2023.2275199","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
ABSTRACTThe crack behaviors under complex stress states are very important for the safety of polymer-bonded explosives (PBXs) under accidental stimulations, but their accurate description is a challenge. Due to the advances of tracking discontinuities and multi-fields coupling, the phase-field model for complex fracture phenomena is attracting significant interest recently. Conventional phase-field fracture models are tension-compression symmetric or based on volumetric-deviatoric strain energy split, and these conventional phase-field models may lead to unrealistic fracture patterns, which hinders its further application in PBX fracture simulations. In this work, we present an extended, tension-compression asymmetric phase-field fracture model for PBXs, which distinguishes the contributions of tensile and compressive stresses to damage driving energy, and couples the mechanism of mechanical degradation and energy-driving cracking diffusion. We implemented our improved phase-field fracture model into finite element calculations and compared the simulation results with the conventional tension-compression symmetric phase-field fracture model and volumetric-deviatoric strain energy split phase-field fracture model by simulating PBX specimens under static loadings. The results show that our model not only accurately depicts the tensile and compressive cracks, but also describes compression-assisted cracking while suppressing unrealistic damage nucleation caused by small amplitudes of local compressive stresses, making it a very efficient way of describing PBX cracking under complex stress states. This new model is both mathematically and physically concise, and convenient for numerical implementation. Moreover, the novel model can be naturally extended to simulate shock-induced dynamic and/or coupled fracture of PBXs because of its feasibilities for dynamic extension and multi-field coupling.KEYWORDS: Finite element methodphase-field fracturepolymer-bonded explosivesstrain energy decompositiontension-compression asymmetry AcknowledgmentsThe corresponding author acknowledges the financial support from National Natural Science Foundation of China (Grant No. 12202415).Disclosure statementNo potential conflict of interest was reported by the author(s).Supplementary materialSupplemental data for this article can be accessed online at https://doi.org/10.1080/07370652.2023.2275199Additional informationFundingThis work was supported by the National Natural Science Foundation of China [12202415].
期刊介绍:
The Journal of Energetic Materials fills the need for an international forum of scientific and technical interchange in the disciplines of explosives, propellants, and pyrotechnics. It is a refereed publication which is published quarterly. Molecular orbital calculations, synthetic and analytical chemistry, formulation, ignition and detonation properties, thermal decomposition, hazards testing, biotechnology, and toxicological and environmental aspects of energetic materials production are appropriate subjects for articles submitted to the Journal.