{"title":"Green Function for an Asymptotically Stable Random Walk in a Half Space","authors":"Denis Denisov, Vitali Wachtel","doi":"10.1007/s10959-023-01283-4","DOIUrl":null,"url":null,"abstract":"Abstract We consider an asymptotically stable multidimensional random walk $$S(n)=(S_1(n),\\ldots , S_d(n) )$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:mi>S</mml:mi> <mml:mrow> <mml:mo>(</mml:mo> <mml:mi>n</mml:mi> <mml:mo>)</mml:mo> </mml:mrow> <mml:mo>=</mml:mo> <mml:mo>(</mml:mo> <mml:msub> <mml:mi>S</mml:mi> <mml:mn>1</mml:mn> </mml:msub> <mml:mrow> <mml:mo>(</mml:mo> <mml:mi>n</mml:mi> <mml:mo>)</mml:mo> </mml:mrow> <mml:mo>,</mml:mo> <mml:mo>…</mml:mo> <mml:mo>,</mml:mo> <mml:msub> <mml:mi>S</mml:mi> <mml:mi>d</mml:mi> </mml:msub> <mml:mrow> <mml:mo>(</mml:mo> <mml:mi>n</mml:mi> <mml:mo>)</mml:mo> </mml:mrow> <mml:mo>)</mml:mo> </mml:mrow> </mml:math> . For every vector $$x=(x_1\\ldots ,x_d)$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:mi>x</mml:mi> <mml:mo>=</mml:mo> <mml:mo>(</mml:mo> <mml:msub> <mml:mi>x</mml:mi> <mml:mn>1</mml:mn> </mml:msub> <mml:mo>…</mml:mo> <mml:mo>,</mml:mo> <mml:msub> <mml:mi>x</mml:mi> <mml:mi>d</mml:mi> </mml:msub> <mml:mo>)</mml:mo> </mml:mrow> </mml:math> with $$x_1\\ge 0$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:msub> <mml:mi>x</mml:mi> <mml:mn>1</mml:mn> </mml:msub> <mml:mo>≥</mml:mo> <mml:mn>0</mml:mn> </mml:mrow> </mml:math> , let $$\\tau _x:=\\min \\{n>0: x_{1}+S_1(n)\\le 0\\}$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:msub> <mml:mi>τ</mml:mi> <mml:mi>x</mml:mi> </mml:msub> <mml:mo>:</mml:mo> <mml:mo>=</mml:mo> <mml:mo>min</mml:mo> <mml:mrow> <mml:mo>{</mml:mo> <mml:mi>n</mml:mi> <mml:mo>></mml:mo> <mml:mn>0</mml:mn> <mml:mo>:</mml:mo> <mml:msub> <mml:mi>x</mml:mi> <mml:mn>1</mml:mn> </mml:msub> <mml:mo>+</mml:mo> <mml:msub> <mml:mi>S</mml:mi> <mml:mn>1</mml:mn> </mml:msub> <mml:mrow> <mml:mo>(</mml:mo> <mml:mi>n</mml:mi> <mml:mo>)</mml:mo> </mml:mrow> <mml:mo>≤</mml:mo> <mml:mn>0</mml:mn> <mml:mo>}</mml:mo> </mml:mrow> </mml:mrow> </mml:math> be the first time the random walk $$x+S(n)$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:mi>x</mml:mi> <mml:mo>+</mml:mo> <mml:mi>S</mml:mi> <mml:mo>(</mml:mo> <mml:mi>n</mml:mi> <mml:mo>)</mml:mo> </mml:mrow> </mml:math> leaves the upper half space. We obtain the asymptotics of $$p_n(x,y):= {\\textbf{P}}(x+S(n) \\in y+\\Delta , \\tau _x>n)$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:msub> <mml:mi>p</mml:mi> <mml:mi>n</mml:mi> </mml:msub> <mml:mrow> <mml:mo>(</mml:mo> <mml:mi>x</mml:mi> <mml:mo>,</mml:mo> <mml:mi>y</mml:mi> <mml:mo>)</mml:mo> </mml:mrow> <mml:mo>:</mml:mo> <mml:mo>=</mml:mo> <mml:mi>P</mml:mi> <mml:mrow> <mml:mo>(</mml:mo> <mml:mi>x</mml:mi> <mml:mo>+</mml:mo> <mml:mi>S</mml:mi> <mml:mrow> <mml:mo>(</mml:mo> <mml:mi>n</mml:mi> <mml:mo>)</mml:mo> </mml:mrow> <mml:mo>∈</mml:mo> <mml:mi>y</mml:mi> <mml:mo>+</mml:mo> <mml:mi>Δ</mml:mi> <mml:mo>,</mml:mo> <mml:msub> <mml:mi>τ</mml:mi> <mml:mi>x</mml:mi> </mml:msub> <mml:mo>></mml:mo> <mml:mi>n</mml:mi> <mml:mo>)</mml:mo> </mml:mrow> </mml:mrow> </mml:math> as n tends to infinity, where $$\\Delta $$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mi>Δ</mml:mi> </mml:math> is a fixed cube. From that, we obtain the local asymptotics for the Green function $$G(x,y):=\\sum _n p_n(x,y)$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:mi>G</mml:mi> <mml:mrow> <mml:mo>(</mml:mo> <mml:mi>x</mml:mi> <mml:mo>,</mml:mo> <mml:mi>y</mml:mi> <mml:mo>)</mml:mo> </mml:mrow> <mml:mo>:</mml:mo> <mml:mo>=</mml:mo> <mml:msub> <mml:mo>∑</mml:mo> <mml:mi>n</mml:mi> </mml:msub> <mml:msub> <mml:mi>p</mml:mi> <mml:mi>n</mml:mi> </mml:msub> <mml:mrow> <mml:mo>(</mml:mo> <mml:mi>x</mml:mi> <mml:mo>,</mml:mo> <mml:mi>y</mml:mi> <mml:mo>)</mml:mo> </mml:mrow> </mml:mrow> </mml:math> , as $$|y |$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:mo>|</mml:mo> <mml:mi>y</mml:mi> <mml:mo>|</mml:mo> </mml:mrow> </mml:math> and/or $$|x |$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:mo>|</mml:mo> <mml:mi>x</mml:mi> <mml:mo>|</mml:mo> </mml:mrow> </mml:math> tend to infinity.","PeriodicalId":54760,"journal":{"name":"Journal of Theoretical Probability","volume":"62 1","pages":"0"},"PeriodicalIF":0.8000,"publicationDate":"2023-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Theoretical Probability","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s10959-023-01283-4","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract We consider an asymptotically stable multidimensional random walk $$S(n)=(S_1(n),\ldots , S_d(n) )$$ S(n)=(S1(n),…,Sd(n)) . For every vector $$x=(x_1\ldots ,x_d)$$ x=(x1…,xd) with $$x_1\ge 0$$ x1≥0 , let $$\tau _x:=\min \{n>0: x_{1}+S_1(n)\le 0\}$$ τx:=min{n>0:x1+S1(n)≤0} be the first time the random walk $$x+S(n)$$ x+S(n) leaves the upper half space. We obtain the asymptotics of $$p_n(x,y):= {\textbf{P}}(x+S(n) \in y+\Delta , \tau _x>n)$$ pn(x,y):=P(x+S(n)∈y+Δ,τx>n) as n tends to infinity, where $$\Delta $$ Δ is a fixed cube. From that, we obtain the local asymptotics for the Green function $$G(x,y):=\sum _n p_n(x,y)$$ G(x,y):=∑npn(x,y) , as $$|y |$$ |y| and/or $$|x |$$ |x| tend to infinity.
期刊介绍:
Journal of Theoretical Probability publishes high-quality, original papers in all areas of probability theory, including probability on semigroups, groups, vector spaces, other abstract structures, and random matrices. This multidisciplinary quarterly provides mathematicians and researchers in physics, engineering, statistics, financial mathematics, and computer science with a peer-reviewed forum for the exchange of vital ideas in the field of theoretical probability.