{"title":"Fabrication of 0.7BaTiO <sub>3</sub> -0.3Ni <sub>0.7</sub> Zn <sub>0.3</sub> Fe <sub>2</sub> O <sub>4</sub> Multiferroic Composite Ceramics Prepared by the Solid-State Combustion Technique","authors":"Sununta Yimsabai, Wichai Warakham, Supree Pinitsoontorn, Naratip Vittayakorn, Theerachai Bongkarn","doi":"10.1080/10584587.2023.2234567","DOIUrl":null,"url":null,"abstract":"AbstractLead-free multiferroic composite ceramics of 0.7BaTiO3-0.3Ni0.7Zn0.3Fe2O4 (BT-NZF) were prepared by the solid-state combustion technique. The BT and NZF powders were calcined in the range of 1100 to 1200 °C for 4 h and 900 to 1100 °C for 2 h, respectively. Afterward, BT-NZF composite ceramics were sintered between 1100 and 1250 °C for 4 h. The effect of the firing temperature on the phase formation, microstructure, electrical, and magnetic properties of BT-NZF composite ceramics was investigated. X-ray diffraction of BT and NFZ powders showed the highest purity phase were prepared the calcination temperatures of 1100 and 1050 °C, respectively. The BT-NZF composite ceramics exhibited coexisting tetragonal perovskite and cubic spinel phases. The maximum density of 5.85 g/cm3 was obtained when sintering the composite ceramics at 1125 °C. The dielectric constant at room temperature increased with increased sintering temperature. The hysteresis loops showed leakage current in all samples. Ferromagnetic properties showed the highest Ms ∼ 24.56 emu/g measured under a magnetic field of 10,000 Oe from the sample sintered at 1150 °C.Keywords: BT-NZFcompositesmultiferroicferroelectricferromagnetic AcknowledgmentsThis project is funded by National Research Council of Thailand (NRCT): (N41A650100), Naresuan University (NU) and National Science, Research and Innovation Fund (NSRF) with Grant No. R2565B059. Appreciations are also given to Asst. Prof. Dr. Kyle V. Lopin for his help in editing the manuscript.Disclosure StatementNo potential conflict of interest was reported by the author(s).","PeriodicalId":13686,"journal":{"name":"Integrated Ferroelectrics","volume":"5 1","pages":"0"},"PeriodicalIF":0.7000,"publicationDate":"2023-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Integrated Ferroelectrics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/10584587.2023.2234567","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
AbstractLead-free multiferroic composite ceramics of 0.7BaTiO3-0.3Ni0.7Zn0.3Fe2O4 (BT-NZF) were prepared by the solid-state combustion technique. The BT and NZF powders were calcined in the range of 1100 to 1200 °C for 4 h and 900 to 1100 °C for 2 h, respectively. Afterward, BT-NZF composite ceramics were sintered between 1100 and 1250 °C for 4 h. The effect of the firing temperature on the phase formation, microstructure, electrical, and magnetic properties of BT-NZF composite ceramics was investigated. X-ray diffraction of BT and NFZ powders showed the highest purity phase were prepared the calcination temperatures of 1100 and 1050 °C, respectively. The BT-NZF composite ceramics exhibited coexisting tetragonal perovskite and cubic spinel phases. The maximum density of 5.85 g/cm3 was obtained when sintering the composite ceramics at 1125 °C. The dielectric constant at room temperature increased with increased sintering temperature. The hysteresis loops showed leakage current in all samples. Ferromagnetic properties showed the highest Ms ∼ 24.56 emu/g measured under a magnetic field of 10,000 Oe from the sample sintered at 1150 °C.Keywords: BT-NZFcompositesmultiferroicferroelectricferromagnetic AcknowledgmentsThis project is funded by National Research Council of Thailand (NRCT): (N41A650100), Naresuan University (NU) and National Science, Research and Innovation Fund (NSRF) with Grant No. R2565B059. Appreciations are also given to Asst. Prof. Dr. Kyle V. Lopin for his help in editing the manuscript.Disclosure StatementNo potential conflict of interest was reported by the author(s).
期刊介绍:
Integrated Ferroelectrics provides an international, interdisciplinary forum for electronic engineers and physicists as well as process and systems engineers, ceramicists, and chemists who are involved in research, design, development, manufacturing and utilization of integrated ferroelectric devices. Such devices unite ferroelectric films and semiconductor integrated circuit chips. The result is a new family of electronic devices, which combine the unique nonvolatile memory, pyroelectric, piezoelectric, photorefractive, radiation-hard, acoustic and/or dielectric properties of ferroelectric materials with the dynamic memory, logic and/or amplification properties and miniaturization and low-cost advantages of semiconductor i.c. technology.