Non-proportionality of Light Yield of CeBr 3 Scintillator

IF 0.7 4区 工程技术 Q4 ENGINEERING, ELECTRICAL & ELECTRONIC Integrated Ferroelectrics Pub Date : 2023-09-29 DOI:10.1080/10584587.2023.2234569
S. Yonphan, W. Chaiphaksa, H. J. Kim, J. Kaewkhao
{"title":"Non-proportionality of Light Yield of CeBr <sub>3</sub> Scintillator","authors":"S. Yonphan, W. Chaiphaksa, H. J. Kim, J. Kaewkhao","doi":"10.1080/10584587.2023.2234569","DOIUrl":null,"url":null,"abstract":"AbstractCerium bromide (CeBr3) scintillation crystal were studied and analyzed from the photon and electron response measurements. For photon response measurements, the radioactive source has been used for the energy range of 0.356 MeV ≤E≤ 1.332 MeV. The 137Cs source irradiated with gamma ray energy at 0.662 MeV was used for the electron response measurement using Compton coincidence technique. The variable angles (θ) would generate the gamma energies corresponding to a scattering angle of 30° to 120°. The results of number of photoelectron (Nphe) show responds to linear trends for photon and electron response. The light yield shows increase with increasing the photon and electron energy. The results showed the non-proportionality of photon response and electron response demonstrated good proportional properties of all energy ranges and as the result, the crystal is a promising candidate for gamma or X-rays detection.Keywords: Scintillation crystalnon-proportionalitylight yieldCeBr3 AcknowledgmentsThe authors would like to thank National Research Council of Thailand (NRCT) through the Research and Researchers for Industries (RRI) Ph.D. Program (NRCT5-RRI63015-P19) for funding this research. The authors express gratitude Thailand Science Research and Innovation (TSRI) for support supporting this research (Project number TSRI_66_9.2).Disclosure StatementNo potential conflict of interest was reported by the author(s).","PeriodicalId":13686,"journal":{"name":"Integrated Ferroelectrics","volume":"96 1","pages":"0"},"PeriodicalIF":0.7000,"publicationDate":"2023-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Integrated Ferroelectrics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/10584587.2023.2234569","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

AbstractCerium bromide (CeBr3) scintillation crystal were studied and analyzed from the photon and electron response measurements. For photon response measurements, the radioactive source has been used for the energy range of 0.356 MeV ≤E≤ 1.332 MeV. The 137Cs source irradiated with gamma ray energy at 0.662 MeV was used for the electron response measurement using Compton coincidence technique. The variable angles (θ) would generate the gamma energies corresponding to a scattering angle of 30° to 120°. The results of number of photoelectron (Nphe) show responds to linear trends for photon and electron response. The light yield shows increase with increasing the photon and electron energy. The results showed the non-proportionality of photon response and electron response demonstrated good proportional properties of all energy ranges and as the result, the crystal is a promising candidate for gamma or X-rays detection.Keywords: Scintillation crystalnon-proportionalitylight yieldCeBr3 AcknowledgmentsThe authors would like to thank National Research Council of Thailand (NRCT) through the Research and Researchers for Industries (RRI) Ph.D. Program (NRCT5-RRI63015-P19) for funding this research. The authors express gratitude Thailand Science Research and Innovation (TSRI) for support supporting this research (Project number TSRI_66_9.2).Disclosure StatementNo potential conflict of interest was reported by the author(s).
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
cebr3闪烁体产光率的非比例性
摘要从光子和电子响应的角度对溴化铈(CeBr3)闪烁晶体进行了研究和分析。在光子响应测量中,辐射源的能量范围为0.356 MeV≤E≤1.332 MeV。137Cs源辐照能量为0.662 MeV,采用康普顿符合技术进行电子响应测量。变角(θ)会产生对应于30°到120°散射角的伽马能量。光电子数(Nphe)的结果显示了光子和电子响应的线性趋势。光产率随光子和电子能量的增加而增加。结果表明,光子响应和电子响应的非比例性在所有能量范围内都表现出良好的比例特性,因此,该晶体是一个有希望用于伽马或x射线探测的候选者。作者要感谢泰国国家研究委员会(NRCT)通过工业研究和研究人员(RRI)博士计划(NRCT5-RRI63015-P19)资助了这项研究。作者感谢泰国科学研究与创新(TSRI)对本研究的支持(项目编号TSRI_66_9.2)。披露声明作者未报告潜在的利益冲突。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Integrated Ferroelectrics
Integrated Ferroelectrics 工程技术-工程:电子与电气
CiteScore
1.40
自引率
0.00%
发文量
179
审稿时长
3 months
期刊介绍: Integrated Ferroelectrics provides an international, interdisciplinary forum for electronic engineers and physicists as well as process and systems engineers, ceramicists, and chemists who are involved in research, design, development, manufacturing and utilization of integrated ferroelectric devices. Such devices unite ferroelectric films and semiconductor integrated circuit chips. The result is a new family of electronic devices, which combine the unique nonvolatile memory, pyroelectric, piezoelectric, photorefractive, radiation-hard, acoustic and/or dielectric properties of ferroelectric materials with the dynamic memory, logic and/or amplification properties and miniaturization and low-cost advantages of semiconductor i.c. technology.
期刊最新文献
Investigation of Coatings Formed by Thermal Oxidation on Monocrystalline Silicon Design of a Dual-Chamber Piezoelectric-Driven Micro Blower: Example of Heat Dissipation Use Modeling for Efficiency Enhancement of Perovskite Thin-Film Solar Cell by Using Double-Absorber and Buffer Layers Effect of Different Mn Doping Content on Electrical Properties of KNN Piezoelectric Ceramic Coatings Study on Safe Working Condition of the Electrothermal U-Shaped Actuator
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1