{"title":"Programmable Analog System Benchmarks leading to Efficient Analog Computation Synthesis","authors":"Jennifer Hasler, Cong Hao","doi":"10.1145/3625298","DOIUrl":null,"url":null,"abstract":"This effort develops the first rich suite of analog & mixed-signal benchmark of various sizes and domains, intended for use with contemporary analog and mixed-signal designs and synthesis tools. Benchmarking enables analog-digital co-design exploration as well as extensive evaluation of analog synthesis tools and the generated analog/mixed-signal circuit or device. The goals of this effort are defining analog computation system benchmarks, developing the required concepts for higher-level analog & mixed-signal tools to utilize these benchmarks, and enabling future automated architectural design space exploration (DSE) to determine the best configurable architecture (e.g., a new FPAA) for a certain family of applications. The benchmarks comprise multiple levels of an acoustic , a vision , a communications , and an analog filter system that must be simultaneously satisfied for a complete system.","PeriodicalId":49248,"journal":{"name":"ACM Transactions on Reconfigurable Technology and Systems","volume":"132 1","pages":"0"},"PeriodicalIF":3.1000,"publicationDate":"2023-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Reconfigurable Technology and Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3625298","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0
Abstract
This effort develops the first rich suite of analog & mixed-signal benchmark of various sizes and domains, intended for use with contemporary analog and mixed-signal designs and synthesis tools. Benchmarking enables analog-digital co-design exploration as well as extensive evaluation of analog synthesis tools and the generated analog/mixed-signal circuit or device. The goals of this effort are defining analog computation system benchmarks, developing the required concepts for higher-level analog & mixed-signal tools to utilize these benchmarks, and enabling future automated architectural design space exploration (DSE) to determine the best configurable architecture (e.g., a new FPAA) for a certain family of applications. The benchmarks comprise multiple levels of an acoustic , a vision , a communications , and an analog filter system that must be simultaneously satisfied for a complete system.
期刊介绍:
TRETS is the top journal focusing on research in, on, and with reconfigurable systems and on their underlying technology. The scope, rationale, and coverage by other journals are often limited to particular aspects of reconfigurable technology or reconfigurable systems. TRETS is a journal that covers reconfigurability in its own right.
Topics that would be appropriate for TRETS would include all levels of reconfigurable system abstractions and all aspects of reconfigurable technology including platforms, programming environments and application successes that support these systems for computing or other applications.
-The board and systems architectures of a reconfigurable platform.
-Programming environments of reconfigurable systems, especially those designed for use with reconfigurable systems that will lead to increased programmer productivity.
-Languages and compilers for reconfigurable systems.
-Logic synthesis and related tools, as they relate to reconfigurable systems.
-Applications on which success can be demonstrated.
The underlying technology from which reconfigurable systems are developed. (Currently this technology is that of FPGAs, but research on the nature and use of follow-on technologies is appropriate for TRETS.)
In considering whether a paper is suitable for TRETS, the foremost question should be whether reconfigurability has been essential to success. Topics such as architecture, programming languages, compilers, and environments, logic synthesis, and high performance applications are all suitable if the context is appropriate. For example, an architecture for an embedded application that happens to use FPGAs is not necessarily suitable for TRETS, but an architecture using FPGAs for which the reconfigurability of the FPGAs is an inherent part of the specifications (perhaps due to a need for re-use on multiple applications) would be appropriate for TRETS.