Effect of Vibration Behavior in Low-Frequency Vibration Cutting on Surface Properties of Workpiece

IF 0.9 Q4 AUTOMATION & CONTROL SYSTEMS International Journal of Automation Technology Pub Date : 2023-09-05 DOI:10.20965/ijat.2023.p0434
Hiroyuki Kodama, Shota Matsuno, Naoyuki Shibata, Kazuhito Ohashi
{"title":"Effect of Vibration Behavior in Low-Frequency Vibration Cutting on Surface Properties of Workpiece","authors":"Hiroyuki Kodama, Shota Matsuno, Naoyuki Shibata, Kazuhito Ohashi","doi":"10.20965/ijat.2023.p0434","DOIUrl":null,"url":null,"abstract":"The objective of this study was to determine the effect of vibration behavior on workpiece surface properties in low-frequency vibration cutting. The effects of the parameters that determine vibration behavior on surface roughness were quantitatively evaluated through a comparison with other cutting conditions. Furthermore, by clarifying how the surface properties of the workpiece, such as roughness, roundness, and cross-sectional curves, change depending on the vibration behavior, a search for optimal conditions for low-frequency vibration cutting was conducted. The best surface properties were obtained under the condition of spindle rotation per vibration E =4.5. By using a value close to the minimum possible spindle rotation R =0.5 when the workpiece is retracted, it is expected to be effective in suppressing the variation in surface roughness at each phase angle; this variation is characteristic of low-frequency vibration cutting. Workpieces machined under low-frequency vibration conditions such as ( E =2.5, R =1.0) and ( E =3.5, R =1.0) were found to form characteristic surface patterns on the workpiece surface owing to a phenomenon in which the depth of the cut to the workpiece changes.","PeriodicalId":43716,"journal":{"name":"International Journal of Automation Technology","volume":null,"pages":null},"PeriodicalIF":0.9000,"publicationDate":"2023-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Automation Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.20965/ijat.2023.p0434","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

The objective of this study was to determine the effect of vibration behavior on workpiece surface properties in low-frequency vibration cutting. The effects of the parameters that determine vibration behavior on surface roughness were quantitatively evaluated through a comparison with other cutting conditions. Furthermore, by clarifying how the surface properties of the workpiece, such as roughness, roundness, and cross-sectional curves, change depending on the vibration behavior, a search for optimal conditions for low-frequency vibration cutting was conducted. The best surface properties were obtained under the condition of spindle rotation per vibration E =4.5. By using a value close to the minimum possible spindle rotation R =0.5 when the workpiece is retracted, it is expected to be effective in suppressing the variation in surface roughness at each phase angle; this variation is characteristic of low-frequency vibration cutting. Workpieces machined under low-frequency vibration conditions such as ( E =2.5, R =1.0) and ( E =3.5, R =1.0) were found to form characteristic surface patterns on the workpiece surface owing to a phenomenon in which the depth of the cut to the workpiece changes.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
低频振动切削中振动行为对工件表面性能的影响
本研究的目的是确定低频振动切削中振动行为对工件表面性能的影响。通过与其他切削条件的比较,定量评价了决定振动行为的参数对表面粗糙度的影响。此外,通过阐明工件表面特性(如粗糙度、圆度和横截面曲线)如何随振动行为而变化,对低频振动切削的最佳条件进行了搜索。当主轴每振动转数E =4.5时,表面性能最佳。当工件缩回时,使用接近最小可能的主轴旋转R =0.5的值,可以有效地抑制各相角处表面粗糙度的变化;这种变化是低频振动切削的特征。在(E =2.5, R =1.0)和(E =3.5, R =1.0)等低频振动条件下加工的工件,由于对工件的切割深度发生变化,在工件表面形成特征表面图案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
International Journal of Automation Technology
International Journal of Automation Technology AUTOMATION & CONTROL SYSTEMS-
CiteScore
2.10
自引率
36.40%
发文量
96
期刊最新文献
Influence of Pilot Hole and Work Material Hardness on Thread Milling with a Wireless Holder System Effect of Different Feed Rates on Chip Evacuation in Drilling of Lead-Free Brass with a Small-Diameter Drill Special Issue on Recent Advanced Manufacturing Science and Technology Initial Wear of Fixed Diamond Wire Tool –Effect of Slurry Assisted Slicing on Machining Mechanism— Tool Path Design of Metal Powder Extrusion in Additive Manufacturing for Suppressing Shape Error Caused During Sintering
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1