Review and Prospect: Applications of Exponential Signals with Machine Learning in Nuclear Magnetic Resonance

IF 0.8 4区 化学 Q4 SPECTROSCOPY Spectroscopy Pub Date : 2023-09-01 DOI:10.56530/spectroscopy.yx1073b8
Di Guo, Xianjing Chen, Mengli Lu, Wangfeng He, Sihui Luo, Yanqin Lin, Yuqing Huang, Lizhi Xiao, Xiaobo Qu
{"title":"Review and Prospect: Applications of Exponential Signals with Machine Learning in Nuclear Magnetic Resonance","authors":"Di Guo, Xianjing Chen, Mengli Lu, Wangfeng He, Sihui Luo, Yanqin Lin, Yuqing Huang, Lizhi Xiao, Xiaobo Qu","doi":"10.56530/spectroscopy.yx1073b8","DOIUrl":null,"url":null,"abstract":"Nuclear magnetic resonance (NMR) spectroscopy presents an important analytical tool for composition analysis, molecular structure elucidation, and dynamic study in the fields of chemistry, biomedicine, food science, energy and more. As a basic function, exponential functions can be applied to model NMR signals of free induction decay, relaxation, and diffusion. In this paper, we will review Fourier and Laplace NMR exponential signals separately, as well as the performance of state-of-the-art machine learning on NMR applications.","PeriodicalId":21957,"journal":{"name":"Spectroscopy","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Spectroscopy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.56530/spectroscopy.yx1073b8","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"SPECTROSCOPY","Score":null,"Total":0}
引用次数: 0

Abstract

Nuclear magnetic resonance (NMR) spectroscopy presents an important analytical tool for composition analysis, molecular structure elucidation, and dynamic study in the fields of chemistry, biomedicine, food science, energy and more. As a basic function, exponential functions can be applied to model NMR signals of free induction decay, relaxation, and diffusion. In this paper, we will review Fourier and Laplace NMR exponential signals separately, as well as the performance of state-of-the-art machine learning on NMR applications.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
回顾与展望:指数信号与机器学习在核磁共振中的应用
核磁共振波谱在化学、生物医学、食品科学、能源等领域的成分分析、分子结构解析和动态研究中具有重要的应用价值。作为一种基本函数,指数函数可以用来模拟自由感应衰减、弛豫和扩散的核磁共振信号。在本文中,我们将分别回顾傅里叶和拉普拉斯核磁共振指数信号,以及最先进的机器学习在核磁共振应用中的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Spectroscopy
Spectroscopy 物理-光谱学
CiteScore
1.10
自引率
0.00%
发文量
0
审稿时长
3 months
期刊介绍: Spectroscopy welcomes manuscripts that describe techniques and applications of all forms of spectroscopy and that are of immediate interest to users in industry, academia, and government.
期刊最新文献
2024 Review of Spectroscopic Instrumentation The Application of Atomic Spectroscopy Techniques in the Recovery of Critical Raw Materials from Industrial Waste Streams, Part I Coming to a Screen Near You? Infrared Spectral Interpretation, In The Beginning I: The Meaning of Peak Positions, Heights, and Widths Spectroscopic Analysis of the Effects of Alkaline Extractants on Humic Acids Isolated from Herbaceous Peat
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1