Introduction of a new recombinant vaccine based on GRP78 for breast cancer immunotherapy and evaluation in a mouse model

IF 2.2 4区 工程技术 Q3 PHARMACOLOGY & PHARMACY Bioimpacts Pub Date : 2023-09-18 DOI:10.34172/bi.2023.27829
Hamed Zare, Hamid Bakherad, Arman Nasr Esfahani, Mohamad Norouzi, Hossein Aghamollaei, Seyed Latif Mousavi Gargari, Fatemeh Mahmoodi, Mahdi Aliomrani, Walead Ebrahimizadeh
{"title":"Introduction of a new recombinant vaccine based on GRP78 for breast cancer immunotherapy and evaluation in a mouse model","authors":"Hamed Zare, Hamid Bakherad, Arman Nasr Esfahani, Mohamad Norouzi, Hossein Aghamollaei, Seyed Latif Mousavi Gargari, Fatemeh Mahmoodi, Mahdi Aliomrani, Walead Ebrahimizadeh","doi":"10.34172/bi.2023.27829","DOIUrl":null,"url":null,"abstract":"Introduction: Breast cancer is one of the most prevalent malignancies in women. Several treatment options are available today, including surgery, chemotherapy, and radiotherapy. Immunotherapy, as a highly specific therapy, involves adaptive immune responses and immunological memory. In our present research, we used the recombinant C-terminal domain of the GRP78 (glucose- regulated protein 78) protein to induce an immune response and investigate its therapeutic impact in the 4T1 breast cancer model. Methods: BALB/c mice were immunized with the cGRP78 protein. The humoral immune response was assessed by ELISA. Then, BALB/c mice were injected subcutaneously with 1×106 4T1 tumor cells. Subsequently, tumor size and survival rate measurements, MTT, and cytokine assays were performed. Results: The animals receiving the cGRP78 vaccine showed significantly more favorable survival and slower tumor growth rates compared with unvaccinated tumor-bearing mice as the negative control mice. Circulating levels of tumoricidal cytokines such as IFNγ were higher, whereas tolerogenic cytokines such as IL-2, 6, and 10 either did not increase or had a decreasing trend in mice receiving cGRP78. Conclusion: cGRP78 vaccines generated potent immunotherapeutic effects in a breast cancer mouse model. This novel strategy of targeting the GRP78 protein can promote the development of cancer vaccines and immunotherapies for breast cancer malignancies.","PeriodicalId":48614,"journal":{"name":"Bioimpacts","volume":null,"pages":null},"PeriodicalIF":2.2000,"publicationDate":"2023-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioimpacts","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.34172/bi.2023.27829","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0

Abstract

Introduction: Breast cancer is one of the most prevalent malignancies in women. Several treatment options are available today, including surgery, chemotherapy, and radiotherapy. Immunotherapy, as a highly specific therapy, involves adaptive immune responses and immunological memory. In our present research, we used the recombinant C-terminal domain of the GRP78 (glucose- regulated protein 78) protein to induce an immune response and investigate its therapeutic impact in the 4T1 breast cancer model. Methods: BALB/c mice were immunized with the cGRP78 protein. The humoral immune response was assessed by ELISA. Then, BALB/c mice were injected subcutaneously with 1×106 4T1 tumor cells. Subsequently, tumor size and survival rate measurements, MTT, and cytokine assays were performed. Results: The animals receiving the cGRP78 vaccine showed significantly more favorable survival and slower tumor growth rates compared with unvaccinated tumor-bearing mice as the negative control mice. Circulating levels of tumoricidal cytokines such as IFNγ were higher, whereas tolerogenic cytokines such as IL-2, 6, and 10 either did not increase or had a decreasing trend in mice receiving cGRP78. Conclusion: cGRP78 vaccines generated potent immunotherapeutic effects in a breast cancer mouse model. This novel strategy of targeting the GRP78 protein can promote the development of cancer vaccines and immunotherapies for breast cancer malignancies.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一种基于GRP78的乳腺癌免疫治疗重组疫苗的介绍及小鼠模型评价
乳腺癌是女性中最常见的恶性肿瘤之一。目前有几种治疗方法可供选择,包括手术、化疗和放疗。免疫治疗是一种高度特异性的治疗方法,涉及适应性免疫反应和免疫记忆。在我们目前的研究中,我们利用GRP78(葡萄糖调节蛋白78)蛋白的重组c端结构域诱导免疫应答,并研究其在4T1乳腺癌模型中的治疗作用。方法:用cGRP78蛋白免疫BALB/c小鼠。采用酶联免疫吸附测定体液免疫应答。然后,给BALB/c小鼠皮下注射1×106 4T1肿瘤细胞。随后,进行肿瘤大小和存活率测量、MTT和细胞因子测定。结果:与未接种cGRP78疫苗的荷瘤小鼠相比,接种cGRP78疫苗的小鼠存活率明显提高,肿瘤生长速度明显减慢。在接受cGRP78的小鼠中,IFNγ等杀肿瘤细胞因子的循环水平较高,而IL-2、6和10等耐受性细胞因子没有增加或呈下降趋势。结论:cGRP78疫苗在乳腺癌小鼠模型中具有较强的免疫治疗作用。这种靶向GRP78蛋白的新策略可以促进乳腺癌恶性肿瘤疫苗和免疫疗法的发展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Bioimpacts
Bioimpacts Pharmacology, Toxicology and Pharmaceutics-Pharmaceutical Science
CiteScore
4.80
自引率
7.70%
发文量
36
审稿时长
5 weeks
期刊介绍: BioImpacts (BI) is a peer-reviewed multidisciplinary international journal, covering original research articles, reviews, commentaries, hypotheses, methodologies, and visions/reflections dealing with all aspects of biological and biomedical researches at molecular, cellular, functional and translational dimensions.
期刊最新文献
The impact of particle size of nanostructured lipid carriers on follicular drug delivery: A comprehensive analysis of mouse and human hair follicle penetration Association of tumour mutation burden with prognosis and its clinical significance in stage III gastric cancer A comprehensive review on alpha-lipoic acid delivery by nanoparticles Systemic nitric oxide metabolites and the chance of pre-diabetes regression to normoglycemia: A 9-year cohort study A human acellular dermal matrix coated with zinc oxide nanoparticles accelerates tendon repair in patients with hand flexor tendon injuries in zone 5 of the hand
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1