Real-Time Multi-Object Detection Using Enhanced Yolov5-7S on Multi-GPU for High-Resolution Video

IF 0.8 Q4 COMPUTER SCIENCE, SOFTWARE ENGINEERING International Journal of Image and Graphics Pub Date : 2023-02-02 DOI:10.1142/s0219467824500190
Shakil A. Shaikh, Jayant J. Chopade, Mohini Pramod Sardey
{"title":"Real-Time Multi-Object Detection Using Enhanced Yolov5-7S on Multi-GPU for High-Resolution Video","authors":"Shakil A. Shaikh, Jayant J. Chopade, Mohini Pramod Sardey","doi":"10.1142/s0219467824500190","DOIUrl":null,"url":null,"abstract":"Multiple objects tracking in a video sequence can be performed by detecting and distinguishing the objects that appear in the sequence. In the context of computer vision, the robust multi-object tracking problem is a difficult problem to solve. Visual tracking of multiple objects is a vital part of an autonomous driving vehicle’s vision technology. Wide-area video surveillance is increasingly using advanced imaging devices with increased megapixel resolution and increased frame rates. As a result, there is a huge increase in demand for high-performance computation system of video surveillance systems for real-time processing of high-resolution videos. As a result, in this paper, we used a single stage framework to solve the MOT problem. We proposed a novel architecture in this paper that allows for the efficient use of one and multiple GPUs are used to process Full High Definition video in real time. For high-resolution video and images, the suggested approach is real-time multi-object detection based on Enhanced Yolov5-7S on Multi-GPU Vertex. We added one more layer at the top in backbone to increase the resolution of feature extracted image to detect small object and increase the accuracy of model. In terms of speed and accuracy, our proposed approach outperforms the state-of-the-art techniques.","PeriodicalId":44688,"journal":{"name":"International Journal of Image and Graphics","volume":"1 1","pages":"0"},"PeriodicalIF":0.8000,"publicationDate":"2023-02-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Image and Graphics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s0219467824500190","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 3

Abstract

Multiple objects tracking in a video sequence can be performed by detecting and distinguishing the objects that appear in the sequence. In the context of computer vision, the robust multi-object tracking problem is a difficult problem to solve. Visual tracking of multiple objects is a vital part of an autonomous driving vehicle’s vision technology. Wide-area video surveillance is increasingly using advanced imaging devices with increased megapixel resolution and increased frame rates. As a result, there is a huge increase in demand for high-performance computation system of video surveillance systems for real-time processing of high-resolution videos. As a result, in this paper, we used a single stage framework to solve the MOT problem. We proposed a novel architecture in this paper that allows for the efficient use of one and multiple GPUs are used to process Full High Definition video in real time. For high-resolution video and images, the suggested approach is real-time multi-object detection based on Enhanced Yolov5-7S on Multi-GPU Vertex. We added one more layer at the top in backbone to increase the resolution of feature extracted image to detect small object and increase the accuracy of model. In terms of speed and accuracy, our proposed approach outperforms the state-of-the-art techniques.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
在多gpu上使用增强的Yolov5-7S进行高分辨率视频的实时多目标检测
通过检测和区分出现在视频序列中的对象,可以实现视频序列中的多个对象跟踪。在计算机视觉领域,鲁棒多目标跟踪问题是一个比较难解决的问题。多目标视觉跟踪是自动驾驶车辆视觉技术的重要组成部分。广域视频监控越来越多地使用具有更高百万像素分辨率和更高帧率的先进成像设备。因此,视频监控系统对高分辨率视频实时处理的高性能计算系统的需求大幅增加。因此,在本文中,我们使用单阶段框架来解决MOT问题。在本文中,我们提出了一种新的架构,可以有效地利用一个和多个gpu来实时处理全高清视频。对于高分辨率视频和图像,建议采用基于Enhanced Yolov5-7S on Multi-GPU Vertex的实时多目标检测方法。我们在主干的顶部增加了一层,以提高特征提取图像的分辨率,以检测小目标,提高模型的精度。在速度和准确性方面,我们提出的方法优于最先进的技术。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
International Journal of Image and Graphics
International Journal of Image and Graphics COMPUTER SCIENCE, SOFTWARE ENGINEERING-
CiteScore
2.40
自引率
18.80%
发文量
67
期刊最新文献
Design and Implementation of Novel Hybrid and Multiscale- Assisted CNN and ResNet Using Heuristic Advancement of Adaptive Deep Segmentation for Iris Recognition Dwarf Mongoose Optimization with Transfer Learning-Based Fish Behavior Classification Model MRCNet: Multi-Level Residual Connectivity Network for Image Classification Feature Matching-Based Undersea Panoramic Image Stitching in VR Animation Multi-disease Classification of Mango Tree Using Meta-heuristic-based Weighted Feature Selection and LSTM Model
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1