Identification and classification of schizophrenic speech using convolutional neural network for medical healthcare

Akshita Abrol, Nisha Kapoor, Parveen Kumar Lehana
{"title":"Identification and classification of schizophrenic speech using convolutional neural network for medical healthcare","authors":"Akshita Abrol, Nisha Kapoor, Parveen Kumar Lehana","doi":"10.1504/ijmei.2023.134534","DOIUrl":null,"url":null,"abstract":"Schizophrenia is a brain disorder that significantly affects the quality of life of affected individuals. One of its prominent symptoms is the induction of changes in the acoustics of the patients. In the absence of definite methods for its diagnosis, speech analysis can help in the preliminary screening of the patients. In this paper, an automated method using deep learning for differentiating between individuals with schizophrenia and psychosis from healthy individuals is suggested. Using convolutional neural networks with speech spectrograms as input, a classification accuracy of 87.01% has been obtained for levels of schizophrenia and 95.26% for differentiating between schizophrenic and healthy speech.","PeriodicalId":39126,"journal":{"name":"International Journal of Medical Engineering and Informatics","volume":"156 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Medical Engineering and Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/ijmei.2023.134534","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0

Abstract

Schizophrenia is a brain disorder that significantly affects the quality of life of affected individuals. One of its prominent symptoms is the induction of changes in the acoustics of the patients. In the absence of definite methods for its diagnosis, speech analysis can help in the preliminary screening of the patients. In this paper, an automated method using deep learning for differentiating between individuals with schizophrenia and psychosis from healthy individuals is suggested. Using convolutional neural networks with speech spectrograms as input, a classification accuracy of 87.01% has been obtained for levels of schizophrenia and 95.26% for differentiating between schizophrenic and healthy speech.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于卷积神经网络的精神分裂症语音识别与分类
精神分裂症是一种严重影响患者生活质量的脑部疾病。其突出症状之一是诱导患者的声学变化。在缺乏明确的诊断方法的情况下,语音分析可以帮助对患者进行初步筛选。本文提出了一种利用深度学习自动区分精神分裂症和精神病患者与健康个体的方法。使用以语音谱图为输入的卷积神经网络,对精神分裂症水平的分类准确率为87.01%,对精神分裂症和健康语音的区分准确率为95.26%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
2.20
自引率
0.00%
发文量
110
期刊介绍: IJMEI promotes an understanding of the structural/functional aspects of disease mechanisms and the application of technology towards the treatment/management of such diseases. It seeks to promote interdisciplinary collaboration between those interested in the theoretical and clinical aspects of medicine and to foster the application of computers and mathematics to problems arising from medical sciences. IJMEI includes authoritative review papers, the reporting of original research, and evaluation reports of new/existing techniques and devices. Each issue also contains a comprehensive information service. Topics covered include Hospital information/medical record systems, data protection/privacy Disease modelling/analysis, evidence-based clinical modelling/studies Computer-based patient/disease management systems Clinical trials/studies, outcome-based studies/analysis Electronic patient monitoring systems Nanotechnology in medicine, medical applications Tissue engineering, artificial organs, biomaterials design Healthcare standards, service standardisation Controlled medical terminology/vocabularies Nursing informatics, systems integration Healthcare/hospital management, economics Medical technology, intelligent instrumentation, telemedicine Medical/molecular imaging, disease management Bioinformatics, human genome studies/analysis Drug design.
期刊最新文献
ПЕРЕБІГ ВАГІТНОСТІ, ПОЛОГІВ, МОРФОЛОГІЧНІ ТА ІМУНОГІСТОХІМІЧНІ ОСОБЛИВОСТІ ПЛАЦЕНТИ У ВАГІТНИХ З КОРОНАВІРУСНОЮ ХВОРОБОЮ COVID-19 АВТОПСІЙНЕ ДОСЛІДЖЕННЯ: 125–РІЧНИЙ ДОСВІД РОБОТИ КАФЕДРИ ПАТОЛОГІЧНОЇ АНАТОМІЇ ЛЬВІВСЬКОГО НАЦІОНАЛЬНОГО МЕДИЧНОГО УНІВЕРСИТЕТУ ІМЕНІ ДАНИЛА ГАЛИЦЬКОГО ЗМІНИ СЛИЗОВОГО БАР'ЄРУ У ПАЦІЄНТІВ ІЗ СИНДРОМОМ ПОДРАЗНЕНОГО КИШЕЧНИКА ПАТОМОРФОЛОГІЧНА ХАРАКТЕРИСТИКА КРИПТОКОКОЗУ ЛЕГЕНЬ ТА НИРОК ПРИ ВІЛ-ІНФЕКЦІЇ/СНІД ДИСТАНЦІЙНА ОСВІТА НА ПІСЛЯДИПЛОМНОМУ ЕТАПІ НАВЧАННЯ ЛІКАРІВ: ПРОБЛЕМНІ ПИТАННЯ ТА ЇХ ВИРІШЕННЯ НА СУЧАСНОМУ ЕТАПІ
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1