{"title":"A new form of LSMR for solving linear systems and least-squares problems","authors":"Maryam Mojarrab, Afsaneh Hasanpour, Somayyeh Ghadamyari","doi":"10.1504/ijcsm.2023.134561","DOIUrl":null,"url":null,"abstract":"The least squares minimal residual (LSMR) method of Fong and Saunders (2011) is an algorithm for solving linear systems Ax = b and least-squares problems min∥Ax - b∥2 that is analytically equivalent to the MINRES method applied to a normal equation ATAx = AT b so that the quantities ∥ATrk∥2 are minimised (where rk = b - Axk is the residual for current iterate xk). This method is based on the Golub-Kahan bidiagonalisation 1 process, which generates orthonormal Krylov basis vectors. Here, the Golub-Kahan bidiagonalisation 2 process is implemented in the LSMR algorithm. This substitution makes the algorithm simpler than the standard algorithm. Also, numerical results show the new form to be competitive.","PeriodicalId":45487,"journal":{"name":"International Journal of Computing Science and Mathematics","volume":"17 1","pages":"0"},"PeriodicalIF":0.5000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Computing Science and Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/ijcsm.2023.134561","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The least squares minimal residual (LSMR) method of Fong and Saunders (2011) is an algorithm for solving linear systems Ax = b and least-squares problems min∥Ax - b∥2 that is analytically equivalent to the MINRES method applied to a normal equation ATAx = AT b so that the quantities ∥ATrk∥2 are minimised (where rk = b - Axk is the residual for current iterate xk). This method is based on the Golub-Kahan bidiagonalisation 1 process, which generates orthonormal Krylov basis vectors. Here, the Golub-Kahan bidiagonalisation 2 process is implemented in the LSMR algorithm. This substitution makes the algorithm simpler than the standard algorithm. Also, numerical results show the new form to be competitive.