{"title":"Small perturbations of critical nonlocal equations with variable exponents","authors":"Lulu Tao, Rui He, Sihua Liang","doi":"10.1515/dema-2023-0266","DOIUrl":null,"url":null,"abstract":"Abstract In this article, we are concerned with the following critical nonlocal equation with variable exponents: <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\" display=\"block\"> <m:mfenced open=\"{\" close=\"\"> <m:mrow> <m:mtable displaystyle=\"true\"> <m:mtr> <m:mtd columnalign=\"left\"> <m:msubsup> <m:mrow> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mo>−</m:mo> <m:mi mathvariant=\"normal\">Δ</m:mi> </m:mrow> <m:mo>)</m:mo> </m:mrow> </m:mrow> <m:mrow> <m:mi>p</m:mi> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi>x</m:mi> <m:mo>,</m:mo> <m:mi>y</m:mi> </m:mrow> <m:mo>)</m:mo> </m:mrow> </m:mrow> <m:mrow> <m:mi>s</m:mi> </m:mrow> </m:msubsup> <m:mi>u</m:mi> <m:mo>=</m:mo> <m:mi>λ</m:mi> <m:mi>f</m:mi> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi>x</m:mi> <m:mo>,</m:mo> <m:mi>u</m:mi> </m:mrow> <m:mo>)</m:mo> </m:mrow> <m:mo>+</m:mo> <m:msup> <m:mrow> <m:mo>∣</m:mo> <m:mi>u</m:mi> <m:mo>∣</m:mo> </m:mrow> <m:mrow> <m:mi>q</m:mi> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi>x</m:mi> </m:mrow> <m:mo>)</m:mo> </m:mrow> <m:mo>−</m:mo> <m:mn>2</m:mn> </m:mrow> </m:msup> <m:mi>u</m:mi> </m:mtd> <m:mtd columnalign=\"left\"> <m:mstyle> <m:mspace width=\"0.1em\" /> <m:mtext>in</m:mtext> <m:mspace width=\"0.1em\" /> </m:mstyle> <m:mspace width=\"0.33em\" /> <m:mi mathvariant=\"normal\">Ω</m:mi> <m:mo>,</m:mo> </m:mtd> </m:mtr> <m:mtr> <m:mtd columnalign=\"left\"> <m:mi>u</m:mi> <m:mo>=</m:mo> <m:mn>0</m:mn> </m:mtd> <m:mtd columnalign=\"left\"> <m:mstyle> <m:mspace width=\"0.1em\" /> <m:mtext>in</m:mtext> <m:mspace width=\"0.1em\" /> </m:mstyle> <m:mspace width=\"0.33em\" /> <m:msup> <m:mrow> <m:mi mathvariant=\"double-struck\">R</m:mi> </m:mrow> <m:mrow> <m:mi>N</m:mi> </m:mrow> </m:msup> <m:mo>\\</m:mo> <m:mi mathvariant=\"normal\">Ω</m:mi> <m:mo>,</m:mo> </m:mtd> </m:mtr> </m:mtable> </m:mrow> </m:mfenced> </m:math> \\left\\{\\begin{array}{ll}{\\left(-\\Delta )}_{p\\left(x,y)}^{s}u=\\lambda f\\left(x,u)+{| u| }^{q\\left(x)-2}u& \\hspace{0.1em}\\text{in}\\hspace{0.1em}\\hspace{0.33em}\\Omega ,\\\\ u=0& \\hspace{0.1em}\\text{in}\\hspace{0.1em}\\hspace{0.33em}{{\\mathbb{R}}}^{N}\\backslash \\Omega \\right,\\end{array}\\right. where <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi mathvariant=\"normal\">Ω</m:mi> <m:mo>⊂</m:mo> <m:msup> <m:mrow> <m:mi mathvariant=\"double-struck\">R</m:mi> </m:mrow> <m:mrow> <m:mi>N</m:mi> </m:mrow> </m:msup> </m:math> \\Omega \\subset {{\\mathbb{R}}}^{N} is a bounded domain with Lipschitz boundary, <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi>N</m:mi> <m:mo>≥</m:mo> <m:mn>2</m:mn> </m:math> N\\ge 2 , <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi>p</m:mi> <m:mo>∈</m:mo> <m:mi>C</m:mi> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mrow> <m:mi mathvariant=\"normal\">Ω</m:mi> <m:mo>×</m:mo> <m:mi mathvariant=\"normal\">Ω</m:mi> </m:mrow> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:math> p\\in C(\\Omega \\times \\Omega ) is symmetric, <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi>f</m:mi> <m:mo>:</m:mo> <m:mi>C</m:mi> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi mathvariant=\"normal\">Ω</m:mi> <m:mo>×</m:mo> <m:mi mathvariant=\"double-struck\">R</m:mi> </m:mrow> <m:mo>)</m:mo> </m:mrow> <m:mo>→</m:mo> <m:mi mathvariant=\"double-struck\">R</m:mi> </m:math> f:C\\left(\\Omega \\times {\\mathbb{R}})\\to {\\mathbb{R}} is a continuous function, and <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi>λ</m:mi> </m:math> \\lambda is a real positive parameter. We also assume that <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mo>{</m:mo> <m:mrow> <m:mi>x</m:mi> <m:mo>∈</m:mo> <m:msup> <m:mrow> <m:mi mathvariant=\"double-struck\">R</m:mi> </m:mrow> <m:mrow> <m:mi>N</m:mi> </m:mrow> </m:msup> <m:mo>:</m:mo> <m:mi>q</m:mi> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi>x</m:mi> </m:mrow> <m:mo>)</m:mo> </m:mrow> <m:mo>=</m:mo> <m:msubsup> <m:mrow> <m:mi>p</m:mi> </m:mrow> <m:mrow> <m:mi>s</m:mi> </m:mrow> <m:mrow> <m:mo>∗</m:mo> </m:mrow> </m:msubsup> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi>x</m:mi> </m:mrow> <m:mo>)</m:mo> </m:mrow> </m:mrow> <m:mo>}</m:mo> </m:mrow> <m:mo>≠</m:mo> <m:mi>∅</m:mi> </m:math> \\left\\{x\\in {{\\mathbb{R}}}^{N}:q\\left(x)={p}_{s}^{\\ast }\\left(x)\\right\\}\\ne \\varnothing , and <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:msubsup> <m:mrow> <m:mi>p</m:mi> </m:mrow> <m:mrow> <m:mi>s</m:mi> </m:mrow> <m:mrow> <m:mo>∗</m:mo> </m:mrow> </m:msubsup> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi>x</m:mi> </m:mrow> <m:mo>)</m:mo> </m:mrow> <m:mo>=</m:mo> <m:mi>N</m:mi> <m:mover accent=\"true\"> <m:mrow> <m:mi>p</m:mi> </m:mrow> <m:mrow> <m:mo>˜</m:mo> </m:mrow> </m:mover> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi>x</m:mi> </m:mrow> <m:mo>)</m:mo> </m:mrow> <m:mo>⁄</m:mo> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi>N</m:mi> <m:mo>−</m:mo> <m:mi>s</m:mi> <m:mover accent=\"true\"> <m:mrow> <m:mi>p</m:mi> </m:mrow> <m:mrow> <m:mo>˜</m:mo> </m:mrow> </m:mover> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi>x</m:mi> </m:mrow> <m:mo>)</m:mo> </m:mrow> </m:mrow> <m:mo>)</m:mo> </m:mrow> </m:math> {p}_{s}^{\\ast }\\left(x)=N\\tilde{p}\\left(x)/\\left(N-s\\tilde{p}\\left(x)) is the critical Sobolev exponent for variable exponents. We prove the existence of non-trivial solutions in the case of low perturbations ( <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi>λ</m:mi> </m:math> \\lambda small enough) by using the mountain pass theorem, the concentration-compactness principles for fractional Sobolev spaces with variable exponents, and the Moser iteration method. The features of this article are the following: (1) the function <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi>f</m:mi> </m:math> f does not satisfy the usual Ambrosetti-Rabinowitz condition and (2) this article contains the presence of critical terms, which can be viewed as a partial extension of the previous results concerning the the existence of solutions to this problem in the case of <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi>s</m:mi> <m:mo>=</m:mo> <m:mn>1</m:mn> </m:math> s=1 and subcritical case.","PeriodicalId":10995,"journal":{"name":"Demonstratio Mathematica","volume":null,"pages":null},"PeriodicalIF":2.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Demonstratio Mathematica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/dema-2023-0266","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract In this article, we are concerned with the following critical nonlocal equation with variable exponents: (−Δ)p(x,y)su=λf(x,u)+∣u∣q(x)−2uinΩ,u=0inRN\Ω, \left\{\begin{array}{ll}{\left(-\Delta )}_{p\left(x,y)}^{s}u=\lambda f\left(x,u)+{| u| }^{q\left(x)-2}u& \hspace{0.1em}\text{in}\hspace{0.1em}\hspace{0.33em}\Omega ,\\ u=0& \hspace{0.1em}\text{in}\hspace{0.1em}\hspace{0.33em}{{\mathbb{R}}}^{N}\backslash \Omega \right,\end{array}\right. where Ω⊂RN \Omega \subset {{\mathbb{R}}}^{N} is a bounded domain with Lipschitz boundary, N≥2 N\ge 2 , p∈C(Ω×Ω) p\in C(\Omega \times \Omega ) is symmetric, f:C(Ω×R)→R f:C\left(\Omega \times {\mathbb{R}})\to {\mathbb{R}} is a continuous function, and λ \lambda is a real positive parameter. We also assume that {x∈RN:q(x)=ps∗(x)}≠∅ \left\{x\in {{\mathbb{R}}}^{N}:q\left(x)={p}_{s}^{\ast }\left(x)\right\}\ne \varnothing , and ps∗(x)=Np˜(x)⁄(N−sp˜(x)) {p}_{s}^{\ast }\left(x)=N\tilde{p}\left(x)/\left(N-s\tilde{p}\left(x)) is the critical Sobolev exponent for variable exponents. We prove the existence of non-trivial solutions in the case of low perturbations ( λ \lambda small enough) by using the mountain pass theorem, the concentration-compactness principles for fractional Sobolev spaces with variable exponents, and the Moser iteration method. The features of this article are the following: (1) the function f f does not satisfy the usual Ambrosetti-Rabinowitz condition and (2) this article contains the presence of critical terms, which can be viewed as a partial extension of the previous results concerning the the existence of solutions to this problem in the case of s=1 s=1 and subcritical case.
期刊介绍:
Demonstratio Mathematica publishes original and significant research on topics related to functional analysis and approximation theory. Please note that submissions related to other areas of mathematical research will no longer be accepted by the journal. The potential topics include (but are not limited to): -Approximation theory and iteration methods- Fixed point theory and methods of computing fixed points- Functional, ordinary and partial differential equations- Nonsmooth analysis, variational analysis and convex analysis- Optimization theory, variational inequalities and complementarity problems- For more detailed list of the potential topics please refer to Instruction for Authors. The journal considers submissions of different types of articles. "Research Articles" are focused on fundamental theoretical aspects, as well as on significant applications in science, engineering etc. “Rapid Communications” are intended to present information of exceptional novelty and exciting results of significant interest to the readers. “Review articles” and “Commentaries”, which present the existing literature on the specific topic from new perspectives, are welcome as well.